
www.manaraa.com

Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2006

K x N Trust-Based Agent Reputation K x N Trust-Based Agent Reputation

Christopher Alonzo Parker
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Computer Sciences Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/702

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/702?utm_source=scholarscompass.vcu.edu%2Fetd%2F702&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

www.manaraa.com

School of Engineering
Virginia Commonwealth University

This is to certify that the thesis prepared by Christopher Alonzo Parker entitled K x N
Trust-Based Agent Reputation has been approved by his or her committee as

satisfactory completion of the thesis or dissertation requirement for the degree of
Masters of Science in Computer Science

Dr. David Primeaux, Associate Professor of Computer Science, School of Engineering

Dr. Chao-Kun Cheng, Associate Professor of Computer Science, School of Engineering

Dr. Gurpreet Dhillon, Professor of Information Systems, School of Business

Dr. Dan Resler, Interim Chairman, Department of Computer Science, School of Engineering

Dr. Russell D. Jamison, Dean, School of Engineering

Dr. F. Douglas Boudinot, Dean of the School of Graduate Studies

July 31th, 2006

www.manaraa.com

© Christopher Alonzo Parker, 2006

All Rights Reserved

www.manaraa.com

K X N TRUST-BASED AGENT REPUTATION

A Thesis submitted in partial fulfillment of the requirements for the degree of Masters
of Science in Computer Science at Virginia Commonwealth University.

by

CHRISTOPHER ALONZO PARKER
Bachelors of Science in Computer Science, Virginia Commonwealth University, 2000

Director: DR. DAVID PRIMEAUX
ASSOCIATE PROFESSOR OF COMPUTER SCIENCE, DEPARTMENT OF

COMPUTER SCIENCE

Virginia Commonwealth University
Richmond, Virginia

August, 2006

www.manaraa.com

ii

Acknowledgement

I would like to thank my parents for preparing me for life’s adventure. A special

acknowledgement is reserved for my former co-workers who allowed me to work on

homework, papers, and test preparation while affording the occasional opportunity for

“cat-naps” before early morning classes after a full-time graveyard shift. I would like to

thank my wife, Bessetta Parker, for continued support, encouragement, and prayers. I

would like to thank my thesis advisor, Dr. David Primeaux, for guidance, direction, and

a secondary viewpoint that helped to bring clarity throughout this process.

www.manaraa.com

iii

Table of Contents
Page

Acknowledgements..ii
List of Tables ...v
List of Figures...vi
1. SOFTWARE AGENTS ...1

1.1. Introduction ...1
1.1.1. Introduction to Research...1
1.1.2. Human Agency ...3
1.1.3. Software Agency ..4

1.2. Categories of Agents ...6
1.2.1. Intelligent..6
1.2.2. Learning/Adaptive ..7
1.2.3. Mobile...8
1.2.4. Believable ...9

1.3. Autonomy..11
1.4. Rational Agency..12
1.5. BDI Agents..15

2. DISTRIBUTED ARTIFICIAL INTELLIGENCE ...17
2.1. Overview ...17
2.2. Cooperation ...20
2.3. Coordination..21
2.4. Distributed Problem Solving ...23
2.5. Multi-Agent Systems...25
2.6. Emergence...27

3. TRUST..31
3.1. Introduction ...31
3.2. Types of Trust ...35
3.3. Computing Trust ...37

3.3.1. Trust Update Function ..37
3.3.2. Trust Evolution Function ..42

3.4. Applications of Trust Types ..47
3.4.1. Trust in Information..47
3.4.2. Trust in Information Sources ..48
3.4.3. Trust in Warrantors and Authorities ...50
3.4.4. Trust in Oneself ..51
3.4.5. Trust in Potential Partners...52

4. MACHINE LEARNING ...62
4.1. Overview ...62
4.2. Types of Learning ...64
4.3. MAS Learning...67
4.4. Machine Learning and Trust ...72

5. K x N TRUST-BASED AGENT REPUTATION..73
5.1. k-NEAREST NEIGHBOR..73
5.2. KMAS ...77

5.2.1. Experiment Description ..77
5.2.2. Experiment 1 Hypotheses, Results, and Conclusions ...93
5.2.3. Experiment 2 Hypotheses, Results, and Conclusions ...108
5.2.4. Experiment 3 Hypotheses, Results, and Conclusions ...119

5.3. Future Research...131

www.manaraa.com

iv

List of References ..137
Appendices...143
 Appendix A: fixedIn.txt...144
 Appendix B: Experiment Trial Input ...145
 Appendix C: Failure Rate Log Example..146
 Appendix D: Agent Cooperation Log Example...148
 Appendix E: class CreateFixedInputs ...151
 Appendix F: class ThesisKmas ...153
 Appendix G: class Kmas..155
 Appendix H: class KmasAgent..168
 Appendix I: Experiment: 1 Failures over time ...183
 Appendix J: Experiment: 2 Failures over time ...189
 Appendix K: Experiment: 3 Failures over time ...195

www.manaraa.com

v

List of Tables

Table 1: Experiment 1 Inputs. ...94

Table 2: Experiment 1 ETIP Contents...94

Table 3: Experiment 1 Group A Observations. ...95

Table 4: Experiment 1 Group B Observations. ...97

Table 5: Experiment 1 Group C Observations. ...99

Table 6: Experiment 2 Inputs. ...109

Table 7: Experiment 2 ETIP Contents...109

Table 8: Experiment 2 Group A Observations. ...110

Table 9: Experiment 2 Group B Observations. ...112

Table 10: Experiment 2 Group C Observations. ...114

Table 11: Experiment 3 Inputs. ...120

Table 12: Experiment 3 ETIP Contents...120

Table 13: Experiment 3 Group A Observations. ...121

Table 14: Experiment 3 Group B Observations. ...123

Table 15: Experiment 3 Group C Observations. ...125

www.manaraa.com

vi

List of Figures

Figure 1: Experiment 1 Group A Failure Rate ..95

Figure 2: Experiment 1 Group A Individual Failure Rate...96

Figure 3: Experiment 1 Group B Failure Rate...97

Figure 4: Experiment 1 Group B Individual Failure Rate ...98

Figure 5: Experiment 1 Group C Failure Rate...99

Figure 6: Experiment 1 Group C Individual Failure Rate ...100

Figure 7: Experiment 1 Group A Failures by Time Step...107

Figure 8: Experiment 2 Group A Failure Rate. ...110

Figure 9: Experiment 2 Group A Individual Failure Rate...111

Figure 10: Experiment 2 Group B Failure Rate...112

Figure 11: Experiment 2 Group B Individual Failure Rate ...113

Figure 12: Experiment 2 Group C Failure Rate...114

Figure 13: Experiment 2 Group C Individual Failure Rate ...115

Figure 14: Experiment 3 Group A Failure Rate ..121

Figure 15: Experiment 3 Group A Individual Failure Rate...122

Figure 16: Experiment 3 Group B Failure Rate...123

Figure 17: Experiment 3 Group B Individual Failure Rate ...124

Figure 18: Experiment 3 Group C Failure Rate...125

Figure 19: Experiment 3 Group C Individual Failure Rate ...126

www.manaraa.com

Abstract

K x N Trust-Based Agent Reputation

By Christopher Parker, M.S. Computer Science

A Thesis submitted in partial fulfillment of the requirements for the degree of Computer
Science, Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2006

Major Director: Dr. David Primeaux
Associate Professor, Computer Science

In this research, a multi-agent system called KMAS is presented that models an

environment of intelligent, autonomous, rational, and adaptive agents that reason about

trust, and adapt trust based on experience. Agents reason and adapt using a

modification of the k-Nearest Neighbor algorithm called (k X n) Nearest Neighbor

where k neighbors recommend reputation values for trust during each of n interactions.

Reputation allows a single agent to receive recommendations about the trustworthiness

of others. One goal is to present a recommendation model of trust that outperforms

MAS architectures relying solely on direct agent interaction. A second goal is to

vii

www.manaraa.com

viii

converge KMAS to an emergent system state where only successful cooperation is

allowed. Three experiments are chosen to compare KMAS against a non-(k X n) MAS,

and between different variations of KMAS execution. Research results show KMAS

converges to the desired state, and in the context of this research, KMAS outperforms a

direct interaction-based system.

www.manaraa.com

CHAPTER 1 SOFTWARE AGENTS

SECTION 1.1: INTRODUCTION

1.1.1 INTRODUCTION TO RESEARCH

Trust has been proposed as a way to allow agents to cooperate while mitigating

the risks associated with harmful interactions with untrustworthy partners. In this

research, a multi-agent system called KMAS is presented. KMAS models an

environment of intelligent, autonomous, rational, and adaptive agents. The agents are

intelligent, autonomous, and rational because of their ability to reason about the

trustworthiness of other agents and autonomously decide which agents to interact with

based on self-interest and risk. Agents are adaptive in their ability to update trust based

on experience with cooperative partners. Before presenting the KMAS model, Chapters

1 through 4 will present pertinent subject matter from the areas of Software Agency,

Distributed Artificial Intelligence, Trust, and Machine Learning, as well as existing

research.

Trust is further modeled in an adaptive manner by allowing an agent seeking a

cooperative engagement, to receive recommendations from other agents as to the

1

www.manaraa.com

2

trustworthiness of the selected interaction partner. This type of trust is called

reputation, and will be discussed in Chapter 3. Reputation is modeled by employing an

adaptation of the k-Nearest Neighbor algorithm where nearest neighbors are providing

trust values as advisors in an indirect-supervised learning process. Indirect-supervised

learning is explained in Section 4.2 The adaptation is described as (k X n) Nearest

Neighbor because the k-Nearest Neighbor algorithm is performed n times where n

represents the number of interactions requiring k-Nearest Neighbor to be executed with

k neighbors recommending reputation values for trust. The goal of this research is to

present the KMAS system as a way to model trust in the form of recommendation-based

reputation that will outperform MAS architectures that rely solely on direct interaction

between agents to update trust based on practical experience. Performance is measured

by task completion rate. A second goal is to converge KMAS to a system state where

only successful cooperation is allowed to occur as an emergent property of the system.

This research will conduct experiments to compare performance between

KMAS and a system that is not using the nearest neighbor algorithm. Performance is

measured by each system’s ability to only allow cooperation between an agent seeking

to engage in a cooperative task and a partner that is not only “trusted”, but also will not

cause a harmful interaction in terms of unsuccessful cooperation. Experiments will also

be used to compare different variations of KMAS implementation. Experiment 1 will

contrast KMAS and non-KMAS performance. Experiment 2 will investigate using 3

different values for the number of nearest neighbors in KMAS

www.manaraa.com

3

execution. Experiment 3 will compare different values for how often (k X n) Nearest

Neighbor is performed during execution. The default KMAS configuration is to only

ask for recommendations if an agent is unknown. It may be beneficial to ask for

recommendations for known agents. Research results will show that KMAS can indeed

converge to the desired state, and outperform a system that does not use

recommendation-based reputation.

1.1.2 HUMAN AGENCY

 The notion of agency outside the realm of computer technology is by no means a

new or novel concept. In fact, it is not a stretch of the imagination to suggest that a vast

majority of individuals in human society have interacted with at least one “agent”

during their lifetime. Human agents are often described as being focused on a specific

task, having skills in an area in which they are deemed to be specialists, having access

to information relevant to a specific task, having the necessary contacts to provide a

service, being able to provide a service at a lower cost than the requester of the service,

and having the ability to provide a service that the requester cannot receive in any other

way [Murch and Johnson, 1999]. Upon listing these attributes of human agents, it is

quite easy to describe or list some of the numerous services that human agents provide

on a daily basis. In regards to information, human agents provide detailed background

information, specifications, requirements, statistical, and other pertinent information

concerning products, services, or subject matter. Headhunter agencies assist the job

seeker by targeting national and international career opportunities in a fraction of the

www.manaraa.com

4

time and cost. Human agents are often used to negotiate agreements between buyer and

seller of real estate, while other agents prepare the necessary contracts and agreements.

Agents are also helpful in the area of managing personal finances where they lend

expertise in diverse areas ranging from debt management to retirement planning. In

[Murch and Johnson, 1999], the authors simply describe a human agent as “someone

who performs some act on behalf of another that he or she is uniquely qualified to

undertake.”

1.1.3 SOFTWARE AGENCY

 A wide range of definitions and characteristics has been associated with the term

“agent” as it applies to computer software systems. Agents have been defined with

descriptions ranging from “independent entities equipped with some amount of decision

making power” [Barber et al., 2000], to “an encapsulated computer system that is

situated in some environment, and that is capable of flexible, autonomous action in that

environment in order to meet its design objectives” [N. R. Jennings, 1999]. The latter

definition is actually a refinement of the first, and describes what is commonly referred

to as an “autonomous agent” and will be described in subsequent sections. This paper is

concerned with the types of agents that are distinguished from others by the

environment that they are situated in. Our research is focused on software agents that

occupy software environments as opposed to robot agents that inhabit physical

environments.

www.manaraa.com

5

 Software agents can perform many of the tasks that our human agents are

presently performing. Benefits obtained from using software agents can be found in

many sectors ranging from consumer and business markets to professional services.

For consumers, agents can make our lives more productive by freeing up time from

certain routine tasks such as paying bills or shopping, and can find information relating

to a wealth of subjects on our behalf. Automating financial management as an

alternative to “hard to stick by budgets” has been proposed as a method to ensure

financial security well into the retirement years [Bach, 2004]. For businesses, software

agents can help companies be more efficient and lower costs. The healthcare industry

has used software agents to help healthcare professionals manage patient care by

assisting with diagnoses and prescription recommendations [Murch and Johnson, 1999].

For law enforcement, the National Center for Missing and Exploited Children uses

intelligent agents and facial recognition algorithms to scan photographs from multiple

Internet sources and anticipate the likelihood of success while assessing leads

[Romaniuk, 2000]. These few examples alone highlight the impact of agent research on

our everyday lives.

www.manaraa.com

6

SECTION 1.2: CATEGORIES OF AGENTS

1.2.1 INTELLIGENT

 Now that we have defined what software agents are and how they impact

society, a further discussion is warranted to describe the different categories that agents

can be subdivided into. These categories are not meant to be mutually exclusive and are

simply mentioned to highlight agent diversity. The first category of agents can be

described as intelligent agents. A working definition from Gilbert, et al. (1995) [as

cited in Hermans, 1996, p. 17], is as follows:

Intelligence is the degree of reasoning and learned behavior: the agent’s ability

to accept the user’s statement of goals and carry out the task delegated to it. At

a minimum, there can be some statement of preferences, perhaps in the form of

rules, with an inference engine or some other reasoning mechanism to act on

these preferences. Higher levels of intelligence include user model or some

other form of understanding or reasoning about what a user wants done, and

planning the means to achieve this goal. Further out on the intelligence scale are

systems that learn and adapt to their environment, both in terms of the user’s

objectives, and in terms of the resources available to the agent. Such a system

might, like a human assistant, discover new relationships, connections, or

concepts independently from the human user, and exploit these in anticipating

and satisfying user needs.

www.manaraa.com

7

Therefore, intelligent agents not only work on our behalf, but can also reason on our

behalf while adapting to changes in our objectives and the resources needed to carry

them out.

1.2.2 LEARNING/ADAPTIVE

 The second category of agents is adaptive or learning agents. Murch and

Johnson [Murch and Johnson, 1999] define learning agents as “software agents that

basically learn from the user or owner”. They define learning as the “modification of

behavior through experience or judgment”. We will present an explanation of learning

as it applies to computer science later in the paper. Learning or adaptation can be

applied in single agents or groups of agents. Adaptive agents can be useful in designing

intelligent user interfaces where the system adapts to individual differences across

users. In the VIENA system [Lenzmann and Wachsmuth, 1996], a system of intelligent

agents is used to create interactive manipulation of 3D graphical scenes. The system

translates verbal commands from the user into technical commands that update the

visual model. Agents have different tasks such as translating the command “left” into

screen coordinates based on some built-in special preference that determines how left is

carried out. Spatially, “left” can be carried out in a way that is closer or father away

from the user. The user gives implicit feedback by way of correcting solutions offered

by agents. For example, verbal feedback such as “a bit less”, can correct the solution

offered by the agent tasked with performing “move chair left”. Agents that meet user

www.manaraa.com

8

expectations are “credited”, while agents that do not are “discredited”. VIENA adapts

to user preferences by learning from direct feedback until agents that generate preferred

solutions are dominant in the system.

1.2.3 MOBILE

 In addition to having the ability to learn or adapt, agents can also be designed

with mobility. Mobile agents can travel across a network of computers, including the

Internet, to execute tasks. They are often used to collect data, information, or changes.

Mobile agents have been discussed as a way to enhance search capabilities over existing

methods. Traditional search engines use web crawlers within a client-server

architecture. The web crawlers are programs that search web pages for keywords and

store the web page indices into massive databases. This creates a tremendous load on

network resources, as raw data must be sent across the network to be processed on the

server by manner of the web crawler. Often, only a small portion of this data is actually

needed. [Mandalapu and Adya, (n.d.)] have proposed mobile agents as a way to move

processing to the raw data as opposed to moving the raw data to the processing. An

advantage of using such agents is that after being dispatched, the mobile agent is not

constrained by whether or not the dispatcher is on- or off-line.

www.manaraa.com

9

1.2.4 BELIEVABLE

 The last category of agents can be described as “believable” agents. Believable

agents are agents that show personality, emotion, and give the illusion of life to the user

or the individual that interacts with such an agent. [Mateas, 1997] describes the

philosophy behind believable agents as it relates to the Oz Project, a research group that

studies believable agents in interactive drama. He describes research goals of

developing agent personalities, giving the audience the perception that the agents are

“believable” in the sense that they appear lifelike and display actions that make sense,

and creating agents that are developed as specific characters (artistic abstractions of

reality).

 The specific type of software agents that will be used in our research are

intelligent, adaptive (learning) agents. Our agents will be intelligent in their ability to

reason about the trustworthiness of other agents. It is most likely that the agents in this

research, at best, exhibit low level intelligence. It is also acknowledged that the agents’

ability to display intelligence by reasoning about trust is debatable. In this paper, it is

claimed that reasoning about the trustworthiness of another agent is a computational

process consisting of two input categories: 1) the output created by performing the

nearest neighbor algorithm and criteria used to select nearest neighbors such as agent

age in the system, successful interaction history, and agent predisposition to risk and

trust, and 2) updated trust based on past interaction experiences with the neighbor

www.manaraa.com

10

whose trustworthiness is being computed. The computational process allows an agent

to make a decision about the trustworthiness of another agent in the context of a

potential interaction, and to equate this decision with a numerical, discrete value. It is

unclear whether or not this decision alone provides enough justification to classify

KMAS agents as being intelligent or capable of reason. This question is left open to the

reader. Agents will be able to adapt through experience as interaction with other agents

forces them to update their beliefs about trust and the risks associated with cooperating.

www.manaraa.com

11

SECTION 1.3: AUTONOMY

 In the beginning of the paper, we defined an autonomous agent as one that is

capable of flexible, autonomous action in order to meet its design objectives. [Murch

and Johnson, 1999] define the property of autonomy as the notion that the agent

“exercises control over its own action”, and that “autonomous execution is clearly

central to agency”. [D’Inverno and Luck, 2001, 2004] add that autonomous agents are

self-motivated in the sense that they “create and pursue their own agendas” as opposed

to being under the control of another agent. In this sense, autonomous agents do not

simply act because they are “told what to do”. They act because of some internal

motivation which D’Inverno and Luck define as “any desire or preference that can lead

to the generation and adoption of goals and that affects the outcome of the reasoning or

behavioral task intended to satisfy those goals”. [Ossowski, 1999] further adds that not

only do autonomous agents “make their own decisions” with respect to goal adoption,

but they also choose how to pursue those goals. Autonomous agents can even choose to

adopt the goals of other agents if those goals are in line with their own personal

motivations.

www.manaraa.com

12

SECTION 1.4: RATIONAL AGENCY

 By discussing autonomy, we describe a property of certain agents (that is

autonomous agents) which allows us to understand how certain agents adopt goals.

After goal adoption, it is important to understand why an agent chooses a particular

action to realize those goals, especially if there are multiple actions that can achieve the

desired result. In such cases, agents must make a rational choice between competing

actions. [Wooldridge and Rao, 1999] provide a simple definition of rational agents as

“software entities that perceive their physical or software environment through

appropriate sensors; have a model and can reason about the environment that they

inhabit; and based on their own mental state take actions that change their

environment”. They further expand this definition by stating that the key aspects of

rationality are: 1) balancing reactive and proactive behavior, 2) balancing perception,

deliberation, and action, especially when there are limited resources, and 3) balancing

self-interest and community interest. It is clear then, that rationality does indeed

involve choices.

[Russell, 1999] states that the actions that are best suited “make sense from the

point of view of the information possessed by the agent and its goals”. Why would an

agent decide that it “makes sense” to undertake an action? To answer this question, we

will first present Russell’s four definitions of agent rationality. Perfect rationality is the

capacity to generate maximally successful behavior given the available information.

www.manaraa.com

13

Calculative rationality is the in-principle capacity to compute the perfectly rational

decision given the initially available information. Metalevel rationality is the capacity

to select the optimal combination of computation-sequence-plus-action, under the

constraint that the action must be selected by the computation. Lastly, bounded

optimality (bounded rationality) is the capacity to generate maximally successful

behavior given the available information and computational resources. Here, the

author’s use of behavior implies the actions that can be performed by the agent. Upon

seeing the terms “maximally”, “perfectly”, and “optimal”, we see that agents “pursue

tasks in a rational manner by choosing the action that they believe to be best in order to

achieve a task” [Ossowski, 1999]. Wooldridge and Rao’s third key aspect of rationality

identifies this philosophy as self-interest. [Klusch et al., 2003] build upon this concept

by stating that rational agents “behave in a utilitarian way in an economic sense. They

act, and may even collaborate, to increase their own benefits.”

In this paper, we are particularly interested in agents that are both autonomous

and rational. From [Wooldridge, 2000] we have the following four characteristics of

autonomous, rational agents, and will adopt these characteristics for the purposes of this

work:

1. autonomy: having independent decision making and acting capabilities

2. proactiveness: exhibiting goal directed behavior

3. reactivity: being responsive to environmental changes

4. social ability: interacting with other agents

www.manaraa.com

14

Agents used in our research will be autonomous, rational agents. They will be

autonomous in the sense that they will choose which agents will be selected as

interaction partners, and based on some criteria, will choose to engage in cooperative

action with the chosen partner. Proactiveness is a displayed as the cooperative action is

undertaken to achieve some goal. Reactivity is shown as agents are responsive to the

agent society around them as new agents enter the system environment. Social ability is

required for agents that must interact and cooperate.

www.manaraa.com

15

SECTION 1.5: BDI AGENTS

 As stated previously, rational agents autonomously decide upon an objective to

achieve and by doing so, exhibit goal directed behavior. One such proposed and widely

accepted model of agent rationalism is the BDI agent model [Wooldridge, 2000]. Since

agents in real-time commercial environments exist in a dynamic setting, they must

constantly assess their surroundings. The BDI model allows agents to be implemented

in such a way as to allow them to react to change in the environment and adjust their

goals accordingly.

 The BDI acronym stands for beliefs, desires, and intentions. As an agent

observes its environment, itself, and other agents, its perceptions are the basis for beliefs

about the surrounding world. Therefore, the agent encapsulates within itself a model of

the environment that is static until future perceptions detect changes in the actual

environment. After the agent has modified beliefs as a result of change, it may form

desires in response which displays the rational agent trait of reactivity. Desires are the

actual goals that the agent wishes to bring about. Developing an intention is simply

agent commitment to achieving a goal.

 The agents in this research will not use the BDI model. Although our agents are

autonomous and rational, we are merely concerned with the aspect of agent decision

making that is based on the risk associated with agent partnerships during cooperative

www.manaraa.com

16

task execution. Agent goals are not defined, and cooperative tasks are assumed rather

than explicitly modeled.

www.manaraa.com

CHAPTER 2 DISTRIBUTED ARTIFICIAL
INTELLIGENCE

SECTION 2.1: OVERVIEW

 Earlier, we represented the VIENA system as an example of how a system of

intelligent agents can be used to solve a particular problem. In VIENA’s case, the

problem that the system addresses is “how to adapt the user interface to meet the needs

of various users with differing preferences”. We saw that VIENA achieved this by

decomposing the overall problem into subproblems or tasks that the system was able to

solve at the agent level. The research area of DAI, Distributed Artificial Intelligence, is

concerned with systems such as VIENA, where several systems or system components

interact in order to solve a shared or common problem. With VIENA, computers and

people are the two “systems” that must interact in order to solve the problem. [Moulin

and Chaib-Draa, 1996] define DAI as a “subfield of artificial intelligence which has, for

more than a decade now, been investigating knowledge models, as well as

communication and reasoning techniques that computational agents might need to

participate in societies composed of computers and people”.

17

www.manaraa.com

18

 Moulin and Chaib-Draa identify many reasons for why research in this

particular area of computer science is important. DAI can aid in knowledge

representation and problem solving by providing richer scientific formulations and more

realistic representations in practice. As with VIENA, it may be better to break down a

complicated system into different cooperative entities, such as intelligent agents, to

obtain efficiency. DAI systems can also provide a framework to test theories about

reasoning processes based on knowledge, actions, and planning, as well as contribute to

our understanding of communication processes based on natural language. [Gasser,

1992] provides examples of typical problem domains that DAI can be applied to. He

describes these domains as those in which there can be found:

1) Clear (possibly hierarchical) structures of time, knowledge, communication,

goals, planning, or action

2) Natural (not forced) distribution of actions, perceptions, authority, and/or

control

3) Interdependencies because local decisions may have global impacts, or there

may be harmful interactions among agents

4) Possible limits on communication time, bandwidth, etc., so that a global

viewpoint, controller, or solution is not possible

www.manaraa.com

19

Application domains, to list a few, can be found in the areas of speech and language

processing, manufacturing, robotics, design (VIENA), monitoring and control, and

specialized research problems such as the prisoner’s dilemma.

www.manaraa.com

20

SECTION 2.2: COOPERATION

 Our overview of the field of DAI research identifies interaction to solve a

problem as a central theme. In order to solve problems involving the usage of more

than one system or system component, cooperation between individual entities must

exist. Users must cooperate with a system by providing commands, information,

feedback, and the system must respond in kind. Within systems involving multiple

components such as agents that have various tasks and responsibilities, cooperation

must take place to achieve the overall design goal of the system. [Durfee et al., 1989]

outline 4 generic goals for cooperation within DAI. The authors believe cooperation

can increase the task completion rate through parallelism, increase the set or scope of

achievable tasks by sharing resources such as information and expertise, increase the

likelihood of completing tasks by undertaking duplicate tasks with possibly different

methods of performing these tasks, and decrease interference between tasks by avoiding

harmful interactions.

www.manaraa.com

21

SECTION 2.3: COORDINATION

 In the presence of cooperating entities, DAI research must manage

interdependencies between systems or system components. This management of

interdependencies is called the process of coordination. [Malone, 1990] states that “the

two most fundamental components of coordination are the allocation of scarce

resources and the communication of intermediate results”. In the case of DAI systems

using agents, Moulin and Chaib-Draa indicate that “without coordination, a group of

agents can quickly degenerate into a chaotic collection of individuals, since an agent

only has a partial and imprecise view of the overall system and its actions may interfere

with rather than support other agents’ actions”. [Jennings, 1996] states that the three

main reasons for coordinating agents are dependencies between agents’ actions on one

another, the need to meet global constraints, and that no individual agent has sufficient

competence, resources, or information to solve the entire problem. Coordination is

needed to ensure that all portions of the overall problem are being addressed by some

agent, agent interactions lead to the problem solution, and system goals are realizable in

the presence of limited or scarce resources. Coordination also allows agents to view

others as being committed to the interactions that lead to the problem solution.

 To enable the coordination process, many techniques have been proposed such

as negotiation [Ashri et al., 2003], arbitration [Barber et al., 2000], voting [Barber et al.,

2000], self-modification [Barber et al., 2000], organization [Schumacher, 2000], and

www.manaraa.com

22

multi-agent planning [Ossowski, 1999]. Of these examples, the major coordination

techniques have been organization, negotiation, and multi-agent planning. In

organizational structures, agents have a priori defined roles that other agents have

knowledge of. These roles ensure that agents commit to the behavior that the roles

represent. Negotiation solves the coordination problems of task and resource allocation.

Negotiation can also limit or remove potential harmful interactions between agents.

Multi-agent planning provides agent plans that specify future actions and interaction to

not only allow agents to be aware of other agent responsibilities, but also displays agent

committal to an action or interaction that other agents rely on. All three coordination

strategies ensure that the overall problem is being addressed.

 Coordination techniques and agent cooperation are the framework that allows

groups of agents to fulfill cooperative problem solving goals. Within DAI, there are

two major areas of research: DPS (Distributed Problem Solving, and MAS (Multi-

Agent Systems). Both approaches are similar in their usage of agents to solve

cooperative problems. Their differences lie in the type of agents employed and the

goals of the researchers.

www.manaraa.com

23

SECTION 2.4: DISTRIBUTED PROBLEM SOLVING

 Distributed problem solving studies how problems can be solved by task

allocation to a group of cooperating agents that are coordinated by some process. The

coordination techniques discussed in the previous paragraphs allow for agents to exist in

a cooperative system that has been designed with a structure that allows agents to know

their place within the structure, the scope of what parts other agents play in the problem

solving process, and how interactions are defined. DPS systems assume that

cooperation among agents takes place. This is aided by the type of agents that are

actors in the system. Agents are assumed to be benevolent in the sense that they have

common or non-conflicting goals with other agents, and in contrast with our discussion

of rational agency, these agents do not seek self-interest. Agents are also homogeneous

in the sense of common architectures, ontologies, knowledge representations,

communication languages, degree of problem solving capability, and preference

criteria. According to [Ossowski, 1999], these are traditional assumptions of DPS

research. DPS research goals are aimed at creating predefined system functionality or

properties for a group of cooperating agents whose characteristics are controlled.

www.manaraa.com

24

Because cooperation is assumed, DPS is often called cooperative distributed problem

solving. [Wooldridge, 2000] describes four stages of a cooperative problem solving

process model.

1) Recognition: Agents recognize potential for cooperative action.

2) Team Formation: Agents solicit assistance.

3) Plan formation: Agents develop a joint plan to achieve the goal.

4) Team Action: Agents cooperatively execute the joint plan.

www.manaraa.com

25

SECTION 2.5: MULTI-AGENT SYSTEMS

 In contrast to DPS systems, a MAS (Multi-Agent System) architecture allows

for agents to be heterogeneous. Agent architectures, problem solving capabilities,

expertise, communications languages, etc., can vary from agent to agent. In fact, agents

are not assumed to be benevolent. Existence of multiple, conflicting goals may be

present and even encouraged. For these reasons, [Durfee et al., 1989] define a MAS as

a “loosely coupled network of problem solvers that work together to solve problems

that are beyond their individual capabilities”. Loosely-coupled not only identifies

varying architectures, languages, and goals, but it also highlights the fact that these

agents have the properties of autonomy and self-interested rationality. Rational agents

may have local goals that could conflict with the goals of the system as a whole.

Advantages of this type of system over single agent systems are parallelism which can

provide faster problem solving, scalability, robustness, decreased communication by

transmitting only partial solutions across agents as opposed to raw data processing at

one central site, increased reliability by allowing agents to take on responsibilities of

another agent that failed, intelligence, and the implementation of “real-world”

simulations. Distributed processing in a concurrent manner can increase efficiency of

the system when handling multiple sources of knowledge or multiple activities. This

leads to the MAS having the system property of scalability. Scalability measures a

system's ability to enhance performance through parallelism without loss of efficiency.

For robustness, agents embodying system processes can be designed within cooperation

www.manaraa.com

26

frameworks that can promote conflict resolution and deadlock prevention. Agent

interactions can also allow individual agents, or groups, the benefit of increased levels

of intelligence with respect to the system environment, problem domain knowledge, and

inter-agent cooperation. System intelligence as a whole can be achieved by the

intelligence of the agents that make up the system. Lastly, multi-agent based simulation

can be used to model complex social and cooperative structures to aid researchers in

understanding collective behavior and intelligence.

www.manaraa.com

27

SECTION 2.6: EMERGENCE

 The MAS approach also differs from the traditional DPS approach because

researchers are concerned with properties or functionalities of a system that arise

through interactions among a diverse group of agents. This is the idea of emergence.

Clarke, Irwig, and Wobcke describe emergence as a property of a system through their

work with Tileworld [Clark et al., 1997]. The emergent property is observed when

viewing all of the system components as a whole. In the case of a MAS, the emergent

system property is observed when viewing collective agent properties and collective

agent interactions. Of particular interest is the fact that these authors choose to use

agents based on a BDI architecture. As rational agents, they seek to maximize their

utility without regard to other agents' welfare or the welfare of the system as a whole.

This does not automatically lead to "malicious behavior", but affords the opportunity.

In the case of emergent properties, an agent acting to seek its own benefit may

unknowingly contribute to the overall utility of the system.

 In Tileworld, agents compete for a food resource. Agents score points on a 2-

dimentional grid by moving to holes. When a hole is reached, it is filled. An agent's

performance is measured by the number of holes it fills. A "controller" agent uses the

given number of holes and a vanishing rate to determine hole placement. At the

beginning of each execution cycle the controller agent ensures that the given number of

holes is present on the grid. A vanishing rate of 0 means that a hole disappears once

www.manaraa.com

28

filled in. A value of 1 ensures that every unfilled hole will disappear and reappear in a

random position at each execution cycle. Thus, the vanishing rate is a value within the

interval [0,1], and represents the dynamic nature of the environment.

 The BDI agent's goal in Tileworld is to fill a hole while forming an intention to

fill the one closest to it. Three different types of agents are used, characterized by their

level of communications. Only agents of the same type may form teams and

communicate. Type 1 is non-communicating. Type 2 agents only inform the closest

team member (within a range r) of an intention to fill a hole. The team members will

then never form an intention to fill the same hole. Type 3 agents are different in the

respect that such an agent will form an intention to fill a hole despite being told of other

team members’ wishes to fill the same hole if the agent is closer to the hole than those

team members. If this occurs, the other team members are then forced to abandon their

intentions.

 After experimentation with the agents in Tileworld, the authors found that up to

a certain limit, individual performance of the team members increased as the size of

teams increased. As members and hole consumption increase, more holes are

replenished by the “controller” agent to maintain the given amount. Another observed

property of the system is that communicating agents avoid interfering with each other,

which decreases time wasted on trying to fulfill unobtainable intentions. The emergent

system property is the advantage of working in teams. The authors also expected that as

www.manaraa.com

29

the range of communication grew, average team performance would increase. They

found another emergent system property in that the performance varied logarithmically

with the range. As a result, it can be shown that desired properties of a system can be

produced by interactions between rational, autonomous agents, although the agents

themselves are not concerned with overall system utility.

 We identified that this paper would be concerned with autonomous, rational

agents. In this paper, a system of intelligent agents will be presented in the form of a

multi-agent system called KMAS. Like VIENA, KMAS is a system of intelligent

agents that will be used to solve a problem. The problem can be simply represented as

“finding and isolating deceptive agents” as the system converges towards a state that

only allows cooperation with non-deceptive agents. Sub-problems are solved at the

agent level to identify deceptive agents. As a DAI system, KMAS can test theories

about trust and trust representations. As indicated in Section 2.2, one of the goals of

cooperation is to increase task completion rate by avoiding harmful interactions.

KMAS is used to research whether or not trust can be used as a cooperation strategy to

achieve this as a system goal. KMAS is intelligent at the system level because of the

intelligence of the individual agents that exist and cooperate within the system. As

stated in Section 1.2, our agents are intelligent because of their ability to reason about

agent trustworthiness. Because cooperation is not assumed in all cases, our rational

agents may malevolently possess a goal that allows for breaking of commitments. An

agent may agree to cooperate, but then choose not to honor this agreement if it is not in

www.manaraa.com

30

the agent’s best interest (self-interest). We are also interested in determining if our

experiments provide the opportunity to observe emergent properties of the KMAS

system.

www.manaraa.com

CHAPTER 3 TRUST

SECTION 3.1: INTRODUCTION

 At the heart of MAS research is the engagement in cooperative partnerships

between intelligent agents for the purpose of achieving goals through cooperative tasks

or the sharing of information. In particular, autonomous, rational agents face distinct

challenges when deciding the feasibility or merits of cooperation with potential

partners. The coordination process allows agents to expect that other agents will be

committed to an interaction. If agents are rational, there is a risk that commitments will

be broken, interactions will result in harmful consequences, and misleading or

inaccurate information will be shared. Inherent is the possibility that agents will act

malevolently (as opposed to benevolently) while pursuing self-interested goals. Trust

has been introduced as a technique that rational agents may use as part of the

deliberation process to assess whether or not cooperation will occur. It is also valuable

in determining acceptance of information received from agent information sources. As

a learned function, trust can be derived from previous agent experiences, and can be

updated according to new or future experiences. This paper will explore the usage of

rational, intelligent agents in a MAS environment where trust is used as a computational

31

www.manaraa.com

32

function to determine the trustworthiness of others. Existing research will be presented

to describe the various applications of trust within the field.

 In Chapter 3, we will discuss the benefits of using trust to justify interactions

within DAI systems to aid in the coordination or cooperation processes, and how trust

can be thought of conceptually and computationally. We will also discuss trust as a

way to judge information and information sources in the form of other agents.

In Chapter 4, we will discuss the usage of machine learning techniques to aid in

the coordination and cooperation processes of specific DAI research in the area of

multi-agent systems. MAS architectures where trust is used as a basis to select

information or potential agent interaction partners will also be investigated. The

different types of learning will be described. Learning will be discussed as a process

used to identify optimal strategies, or the best agent to gather advice from.

 There is no universal, mutually agreed upon definition of trust. What is

acknowledged is that trusting relationships between parties implied some form of risk to

both. The wide array of current definitions of trust has been discussed in [Falcone et

al., 2001], [Marsh, 1994], and [Griffiths and Luck, 1999]. Marsh defines trust as taking

an ambiguous path where an assumption is made that positive effects outweigh the

negative. He also describes trust as a continuum of varying degrees of trust delimited

by blind trust and complete mistrust. To Marsh, trust is dynamic in nature, and viewing

www.manaraa.com

33

trust as a continuum, allows trust to change along the points of this continuum. Thus,

agents can be more or less trusting of others based on experiences. A different

approach used by [McKnight and Chervany, 2001] seeks to define trust as a set of high

level concepts because “trust is by nature hard to narrow down to one specific definition

because of the richness of meanings the term conveys in everyday usage”. They divide

trust into categories such as trusting intentions, trust related behavior, trusting beliefs,

institutional-based trust, and disposition to trust. These broad, high level concepts can

then be described by a series of measurable subsets such as information sharing,

predictability, and trusting stance. In addition to implied risk, trust is also described as

an inherent dependency between two parties where party A applies trust as the

assessment by which A expects party B to perform (or not perform) a given action on

which A’s welfare depends [Witkowski et al., 2001].

 The importance of trust has emerged in many problem domains such as E-

Commerce, Agent Modeling, HCI, Computer Supported Cooperative Work, Mixed

Initiative and Adjustable Autonomy, and Ubiquitous Computing [Falcone et al., 2001].

Marsh [Marsh, 1994] outlines the following advantages of trust:

1) Allows an agent to prepare itself for malevolent behavior.

2) Ensures robustness with respect to unknown agents and unforeseen

interactions.

3) Helps in formation of groups.

www.manaraa.com

34

4) Reduces complexity (agents need only to consider world states that arise

from trusted actions).

5) Allows for validation of information and source in information sharing.

6) Justifies interactions because DAI lacks central authority.

 Trust is complex by nature, and “should not be reduced to mere security”

[Falcone et al., 2001]. Trust, in fact, has an advantage over security. Falcone et al

suggest that the world is principally insecure and that relying on another in a risky

situation is inevitable. Trusting implies operating in the absence of, or under varying

levels of security in which security alone is not a sufficient determinant.

www.manaraa.com

35

SECTION 3.2: TYPES OF TRUST

 Because trust is such a broad concept, and can be divided into many categories

as previously discussed, researchers must decide how trust should be modeled,

designed, and implemented. This involves identifying different kinds of measurable

trust types [Falcone et al., 2001]. Falcone, Singh, and Tan identify these types of trust

as trust in environment and infrastructure, trust in personal and mediating agents, trust

in potential partners, trust in information sources, and trust in warrantors and

authorities. In addition, this paper will discuss trust in information itself (for

information sharing), and trust in oneself (self confidence). In general, trust types can

be identified in terms of the object of trust. In terms of reducing the complexity of

modeling trust or identifying trust types, trust can be measured by using one or more

characteristics of the trustee. As a whole, trust can be thought of as being applied to at

least two distinct, but interrelated domains: local and global. Each trust domain is

defined by a set of measurable attributes. The local, or individual domain, can be said

to pertain to an individual or specific object of trust. In the case of an MAS, the object

of trust is most often another agent. Local trust attributes can be among the following:

public record or reputation, appearance or personality, experience from the trustee

perspective such as age (in terms of system life cycles), competence in the form of

licenses or certifications, experience from the perspective of the one who is trusting

(such as past agreements and/or outcomes), trustee/truster similar characteristics,

situational/task dependent, and agent types. Global trust attributes are those that pertain

www.manaraa.com

36

to trust in general or society as a whole. For agents in an MAS environment, global

attributes would allow trust to be viewed across the entire system. Global attributes

would include openness to trust in general, situations across all agents, and class

preference (trust groups or profiles).

 Using trust attribute form to represent trust decreases complexity by allowing

trust to be computed in simple parts that can be combined into an overall trust value.

This modular approach, by nature, lends itself to the concept of reusability. Runtime

usage of different trust types or combination of trust types can be determined based on

environmental changes, tasks, goals, or a change in agent requirements. The values for

certain attributes can be reused within many different attribute combinations as needed.

An example would be a task that not only requires the situational trust attribute, but also

depends on openness to trust in general.

www.manaraa.com

37

SECTION 3.3: COMPUTING TRUST

3.3.1 TRUST UPDATE FUNCTION

 In an environment, agents can employ a computational model of trust that

allows for trust to increase, decrease, or stay the same. One way to model trust

computationally is to use what can be described as a trust update function. In [Jonker

and Treur, 1999], a trust update function is defined as an inductive mathematical

function that relates a current trust representation and a current experience to the next

trust representation. The authors define experience as a group of evaluated events

where each event can influence the degree of trust that an agents has in another. An

event is evaluated as trust-positive or trust-negative depending upon whether or not the

degree of trust is increased or decreased. The trust update function, tu, is modeled as tu

: E x T → T where E is the set of single experiences, and T is the set of trust values

such as an interval in the set of real numbers, [-1, 1].

 A simple way to model a trust update function is to take the current value of

trust, and then add or subtract its weighted value. Changing the weight gives an agent

the ability to increase or decrease trust in a more rapid or slower manner. This is

similar to the usage of learning rates which are employed by machine learning

algorithms, some of which will be discussed later. More complex functions of trust

update can take the form of a multiple termed equation where current trust is not the

www.manaraa.com

38

lone factor in determining the new trust value. The remainder of the section is devoted

to presenting an example of an application of a trust update function.

 [Witkowski et al., 2001] utilize an OTB-Agent (objective-trust based agent) that

selects who it will trade with primarily on the basis of a trust measure built on past

experience of trading partners within a telecommunications intelligent network. The

authors’ example is a MAS in the form of a trading environment in which many

individual agents must select partners with which they will trade on an ongoing basis.

The exact nature of this trading is in the form of telecommunications management of

network bandwidth. The interactions allow for trust relationships to be made, sustained,

or broken over an extended period. Two types of objective-trust based agents are

employed: SCP agents (service control point agents that manage access portals to the

network), and SSP agents (service switching point agents that manage access points for

consumers desiring telecom services).

 At the beginning of each trading cycle, every SSP agent receives a demand for a

resource and submits bids to SCP agents in two ways. If the SSP agent is allowed to

explore by ignoring the initial trust representation of a randomly selected SCP agent, a

bid will be sent to that agent. If the SSP agent does not explore, the most trusted SCP

agents are successively selected until demand requirements are met. The bid size is

determined by the actual demand divided by the number of SCP agents that the SSP

agent will allow to receive bids. The demand rate can be inflated by an overbid rate

www.manaraa.com

39

which determines how much extra resources an SSP agent will bid above the actual

demand. In response, SCP agents attempt to distribute supply of bandwidth resources

to SSP agents by making offers. When bids exceed supply, SCP agents distribute

resources to the most trusted SSP agents first. If all resources are used up, other bids

are rejected. SSP agents update trust in SCP agents based on the honoring of bids.

Trust is increased more if an offer meets or exceeds the bid request and is increased less

if the offer returned is less than the bid. Trust is decreased if the SCP agent does not

return an offer at all. After offers are received, SSP agents utilize the allocated

resources. SCP agents update trust in SSP agents based on resources utilized. Trust is

increased the most if the resources requested are all utilized. Trust is increased less in

the presence of an overbid which indicates that resources have been wasted. If the

resource has not been utilized at all, trust in the SSP agent is decreased.

 It is easy to see that this type of environment fosters quick pairing of trading

partners. As successful interactions increase, trust in agents that are involved in these

early relationships quickly surpasses trust in agents where cooperation has not taken

place. In short, the MAS will quickly converge in terms of long-term partnerships

between SSP and SCP agents. The authors found that when supply is less than demand,

SCP agents maintain a smaller number of customers and trading partner pairing is even

more isolated. As supply lessens, trust becomes a greater factor in selecting partners.

They also found that loyalty to trading partners will exist in these circumstances

because the less trusted SSP agents will be the first relationships to be lost since

www.manaraa.com

40

resources are distributed to the most trusted partners first. It was also found that greedy

SSP behavior in the form of overbidding was rewarded. Even though trust is lessened,

when supply is equal to demand, greedy agents receive more offers causing overall

delivery performance to be better than “honest” agents. Greedy agents maintain

relationships with preferred, “most trusted” suppliers, but lose relationships with lesser

preferred suppliers when overbid resources are not utilized. In this case, the lesser

preferred suppliers are able to protect themselves from this non-benevolent behavior.

 In the previous example, trust was used to rank individual agents. Trust can also

be used to select “types” of agents that are desirable as interaction partners. [Birk,

2001] uses trust update to help agents learn cooperation strategies that are most

appropriate for their environment with respect to the behavior of other agents and

outcomes of cooperative interactions. To achieve this, the author embodies within each

agent a set of hypotheses which serve to represent strategies and labels to employ

during iterated games. Labels represent a form of subjective criteria to aid in partner

selection. A weight, wi, is attached to each possible label. The values of this weight are

in the interval [0.0, 1.0]. To model trust, the trust function is set equal to w such that

trustworthiness increases as w approaches 1.0, and decreases as w approaches 0.0.

According to a threshold of trust, an agent will interact with another agent who displays

the trusted label. Each strategy is described as a hypothesis because it is a potential

solution to the problem of selecting the appropriate strategy. Each hypothesis, strategy

and label, is ranked by a preference function which is used to select the strategy or label

www.manaraa.com

41

to be tested. At the beginning of game execution, agents use a preference function to

signal the label that they wish to display and groups are formed. A group is formed by

randomly selecting one agent, and then selecting additional agents who display labels

that are most trusted by the group as a whole. This is achieved by summing the weights

of a particular label among each agent that is already a part of the group. After all

agents have been placed in a group, each agent selects a strategy using a preference

function and plays a single game. At the end of execution, all agents update preferences

for strategies and labels based on the payoff received from cooperating. The payoff

function is based on the level of cooperation that an agent displayed (investment), and

the cooperation level displayed by the other agents in the group (gain). The resulting

payoff value is positive or negative, and causes preferences for labels and strategies to

increase, decrease, or stay the same. Trust for each label is updated based on the

current trust value, previous payoff, and the number of agents in the current group.

Afterwards, groups are disbanded and execution begins at a new time step. Modeling

trust in this fashion allows for trust to be updated based on how well the previous time

step produced updates that led to cooperation with more trusted agents.

 Since KMAS agents use a computational function to reason about trust, trust

will be computed using a trust update function. An agent will store a trust value for all

agents that it has cooperated with. After each experience, trust is increased or decreased

based on the results of cooperating.

www.manaraa.com

42

3.3.2 TRUST EVOLUTION FUNCTION

 In contrast to trust update in which agents use a current trust value for

computations, trust evolution functions allow an agent to use a set of “remembered”

experiences to derive a new trust representation. [Jonker and Treur, 1999] define a trust

evolution function as a “mathematical function that relates sequences of experiences to

trust representations”. Trust evolution requires more computational overhead, but may

be more desirable in cases where a potential partner’s overall performance should be

judged as opposed to the outcome of the most recent interaction. The trust evolution

function, te, is defined as te: ES x N → T where ES is the set of experience sequences,

N is the set of natural numbers, and T is the set of trust qualifications.

 Marsh also allows for the concept of dynamic trust that changes with experience

of the action of other agents [Marsh, 1994]. Trustworthy behavior causes trust in an

agent to increase, while untrustworthy behavior results in trust reduction. The three

types of dynamic trust are basic trust, Tx, general trust Tx(y) where agent x trust agent y,

and situational trust Tx(y,αx) for a given situation α where x must trust y to perform

correctly in αx. We now investigate the proposed formalisms of Marsh, which the

author suggests may avoid ambiguities, aid in implementation of trust within an agent,

and justify proposed theories with working examples.

www.manaraa.com

43

Marsh's Formalisms

'x' and 'y' denote agents.

All values are in the range [-1,1]

basic trust: Tx (general trusting disposition of x)

situational trust: Tx(y,αx) = Tx(y)Ux(αx)Ix(αx)

Trust is informally defined as the probability weighted by UI that x acts to achieve an

outcome as if it trusts y. General trust, Tx(y), is an estimate.

Ux(αx) is a utility function of costs and benefits, Cx(αx) and Bx(αx).

Ix(αx) is x's measure of the importance of the situation.

general trust: Tx(y) = (1 / |A|) * Σα ∈ A Tx(y,αx)

This equation sums all of the situational trust values for all the tasks in A where x

computes a value for agent y. These are tasks in which x can allow y to participate in if

x chooses to and y is a willing participant.

cooperation threshold: CTx(αx) = [Rx(αx) / (PCx(y,αx) + Tx(y))] * Ix(αx)

R = risk, PC = perceived competence

www.manaraa.com

44

perceived risk: Rx(αx) = (1 / |A|) * Σα ∈ A (Cx(αx)/ Bx(αx))

perceived competence: Can be measured in three ways.

Equals basic trust if the agent is unknown

Equals Tx(y) if the agent is known, but not in the situation being considered

If the agent and the situation are known, the following are factors:

1. experience of the trusting agent (x) in similar situations

2. experience of agent y in similar situations

3. capabilities of y in similar situations

If CTx(αx) < Tx(y,αx), agent x will cooperate with agent y.

 Our first topic of discussion regarding the proposed formalisms will be the

situational trust value. It appears that the dominant determinant for situational trust is

the change in the term UI. We investigate this by asking the question; how can

situational trust increase? Suppose agent y is initially unknown. We expect Tx(y) to be

very low. If a number of subsequent situations have low importance and utility values,

situational trust will continue to be low, and it will also contribute to a low value for the

recursive natured Tx(y) which depends on past situational trust values. Therefore, an

increase of utility or importance will increase both situational and general trust.

www.manaraa.com

45

 Marsh says that the general trust value is "a view of a particular agent of another

with regard to the trusted agent’s general capabilities." If the initial Tx(y) is based upon

y's capability, this is only a factor when the agent is first known. Still, Tx(y) is updated

by the UI product of future situations. We propose that in Marsh's case, trust is not a

view of agent capabilities, but rather the amount of trust needed to cooperate with that

agent. Therefore, to cooperate with an agent that has had historically low situational

trust values, one or more of the following must occur upon judging CTx(αx) < Tx(y,αx):

1. Ix(αx) must be low

2. Rx(αx) must be low

3. PCx(y,αx) must be high

We can then conclude that trust is the actual threshold that needs to be overcome in

order for cooperation to exist. Thus, an agent that has not been required to have large

situational trust values in the past can become a partner in a highly important, high-risk

situation if the appropriate competence is shown.

 Along with trust, Marsh brings up the concept of "experience". He states that

trust relies on judgment based on experience, and if known, past knowledge and

behavior of the agent to be trusted. He describes the basic trust value as being "derived

from previous experience", and is "dynamically altered in the light of all experience."

Although never defined, experience in this sense is intuitively derived from the results

www.manaraa.com

46

of interactions with other agents. The results cannot simply be observed trust values

themselves or competence measures, because past experiences based on past tasks must

be the result of trusted interactions where cooperation has occurred. To illustrate this,

the following question is posed. Should an agent be distrusting in general because it has

not entered into a cooperative agreement? On the contrary, an agent should gradually

change its trust disposition in light of positive or negative experiences as a result of

cooperation. It is unclear whether or not the general trust estimate uses situational trust

from specifically successful interactions, or all potential interactions. Although it may

seem contradictory to the above stated view of basic trust, we assume all potential

interactions are "remembered". If not, general trust in an agent will never diminish, and

this is not realistic. Therefore we define basic trust as an update function, but general

trust as a trust evolution function.

 While Marsh promotes the value of trust within agent cooperation, he concedes

that trust alone is not a sufficient decision making criterion. He suggests that by adding

other methods such as utility theory or theories of rational behavior, a more powerful

and useful tool will be provided to the agents when judging potential interactions.

There is also the matter of deciding how to obtain or calculate the initial trust value

itself, or how to derive a value that represents an agent's capabilities.

www.manaraa.com

47

SECTION 3.4: APPLICATIONS OF TRUST TYPES

3.4.1 TRUST IN INFORMATION

 Trust has been used in MAS environments where researchers are concerned with

system knowledge that is partial, incomplete, uncertain, incorrect, or originating from

multiple, diverse information sources [Barber and Kim, 2001]. Information can also be

dispersed through malicious intent in the case of non-benevolent agents. In instances

where malice is not present, incompetence of an information source can lead to the

presence of information that can be described as untrustworthy or non-credible. The

following paragraphs will present two approaches to computing trust as it pertains to

information and information sources. The first will model trust solely as it applies to

the information given, while the second approach takes into account information and

the agent information sources.

 We have been introduced to the notion of trust as a means of validating

information and its source to determine whether or not the shared information should be

accepted. This concept has been presented in a form of trust-based learning [Primeaux,

2000] using an “actual entity” (AE). According to Primeaux, the AE is a process that

"is identifiable by its state; changes state with each input, and outputs its current state."

Primeaux asserts that AE's will tend to invest relatively more trust in input that is closer

to the values in its current state. Input with values beyond a certain threshold range is

www.manaraa.com

48

ignored and the AE will not change its state. This implies that the values are not

trusted. When the AE adapts its state, it is said to be learning. A variable representing

the general trusting disposition of the AE towards the set of all inputs, is represented by

a monotonically, non-increasing function that converges to 0 as the AE's state becomes

less receptive to change.

3.4.2 TRUST IN INFORMATION SOURCES

 [Barber and Kim, 2001] present a model of trust that takes into account an

agent’s confidence in another to provide correct information, as well as the reputation of

the agent that is providing the information. The authors define trust as the “confidence

in the ability and intention of an information source to deliver correct information”, and

reputation as the “amount of trust an agent gives an information source based on

previous interactions among them”. The information itself is weighed according to

information certainty which is defined as the confidence with respect to quality of a

statement. As a computed trust value, reputation can be increased by consistently

providing trustworthy information to other agents. It can be decreased by incompetence

or malicious behavior.

 In the model, reputation of an information source S1 is represented as P(S1
reliable)

and has the form of a probability distribution where P(S1
reliable) + P(S1

unreliable) = 1. The

authors model a belief revision process based on information source reputation and two

www.manaraa.com

49

types of agent belief bases. “KB” is the background knowledge base that contains

knowledge that an agent has accumulated, and can be inconsistent. “K” is the working

knowledge bases and it is a maximally consistent set of knowledge on “KB” which

serves as a foundation for reasoning and decision processes. When an agent

communicates knowledge “q”, it sends the knowledge to be transferred, and the

certainty that the sender has on the knowledge being true or accurate. The agent

receiving the knowledge calculates its own certainty on “q” in “KB” based on

information previously received from other agents. The receiving agent also uses

reputation values for the agents that have supplied “q”. If there are no conflicts in

“KB”, “q” enters K. If there is conflicting knowledge, the knowledge with the higher

certainty enters “K”.

 Reputation of an information source is revised in two ways, indirect and direct.

Indirect reputation revision occurs when there are conflicts between acquired

knowledge. The resulting certainty of the conflicting knowledge is used to update the

reputation of the sender. If certainty of the knowledge is revised to be higher than

previously stored in “KB”, agent reputation will be made higher. Conversely, if the

certainty of the information is lower, agent reputation will suffer. The second means of

reputation revision takes place if agents have the ability to revise their beliefs on the

reputation of another by eliciting reputation belief from other agents. Here, indirect and

direct refer to the process of revision. Later, we will see indirect and direct described as

a form of agent interaction.

www.manaraa.com

50

3.4.3 TRUST IN WARRANTORS AND AUTHORITIES

 The coordination technique of organization establishes roles within a system of

agents, and allows for the visibility of these roles to be available to all agents within the

system. In the case of open systems, and particularly with internet based systems,

agents that wish to interact within the system can be unknown at any given time if there

is no barrier to entry. In such cases where agents are self-interested and utility

maximizing, care must be taken to protect an agent from potential harmful and

malicious actions. [Mass and Shehory, 2001] have proposed digital certificates as a

way to dynamically update trust in potential partners as well as a way to verify

capabilities claimed by other agents and to establish agent roles. Each agent may have

one or more certificates certifying capabilities or performance. One may be issued by

the developer, while others can be issued by 3rd parties who have used the agent’s

services, and can provide recommendations about performance and trustworthiness.

 Review of these certificates takes place before interaction is allowed to occur.

As an example, requester agent X sends a request to agent Y with certificates attached.

The request may be to access some service or resource held by Y. Y sends the

certificates to a role assignment module and the request itself to a deliberation module.

The role assignment module retrieves role assignment policy, and according to the

certificates presented, assigns a role to agent X. Agent Y can also request the

certificates of other agents that issued the certificates to X. By doing this, agents can

www.manaraa.com

51

establish whether or not the issuers of certificates are trusted. The deliberation module

analyzes the request to find resources and actions needed for its fulfillment. Finally, the

access control module takes the roles, resources, actions, and trust policy as input to

determine whether or not to accept or deny the request from X. After results of the

interaction are obtained, Y can downgrade the trust level of X, those who presented

certificates from X, and those who granted certificates to X if the interaction results are

not successful, or are harmful to Y. The updated trust policy can then be used to protect

agent Y from future negative interactions. In the case of unknown agents,

trustworthiness can be derived from the trustworthiness of other agents who have given

certificates to the unknown agent.

3.4.4 TRUST IN ONESELF

 Many implementations of trust concepts have been applied to trust as it relates

to other agents. The research in [Lenzmann and Wachsmuth, 1997] answers the

question: Can an agent have a measure of trust in its own capabilities? Their work

describes a MAS system where agents customize themselves based on user preferences.

The goal is to effectively automate user actions. The chosen cooperation framework is

the contract net process where contractor agents receive announcements of tasks from

manager agents. Contractors send bids in response to the manager which then chooses

the contractor with the best bid to process the task. The authors define confidence as

"the trust a contractor has doing the task successfully". This can be described as the

www.manaraa.com

52

contractor’s view of its own abilities to meet the user’s current need. This measure is a

function of performance with respect to the previous task, interaction history, and how

well the user preference (that the agent embodies) fits in with the current situation. This

takes into account the notion that a given user's preference may depend on situational

circumstances. A higher confidence level will make a contractor's bid more attractive,

while lower confidence weakens bids.

3.4.5 TRUST IN POTENTIAL PARTNERS

 We will now investigate examples of applications of trust related to the trust that

an agent must have in order to cooperate with potential partners. In our discussion of

DAI systems, we indicated that DAI can provide a framework to test theories about

reasoning processes. In [Nooteboom et al., 2001], the authors have devised a

methodology called Agent-based Computational Economics (ACE) and define it as a

process of “boundedly rational adaptation, based on mutual evaluation of transaction

partners that takes into account trust and profits”. Economic activity emerges from the

process of interaction between agents as they adapt decisions to past experience.

Agents adapt the weight they attach to trust and their own loyalty as a function of

realized profits. Trustworthiness is realized as a commitment to an ongoing trading

partner relationship (loyalty). There is a threshold of resistance to temptation, below

which an agent will not defect to a more alternative in terms of realizable profits. Profit

can be increased by switching suppliers when products are differentiated. Agents may

www.manaraa.com

53

incur costs associated with switching to a new trading partner in terms of loss of

investments, and new investments that must be made. They also loose advantages

gained by process improvements that normally occur between partners who have

interacted in long term relationships over time.

 Within ACE, buyer and supplier agents use matching algorithms to create

potential relationships on the basis of individual agent preference rankings over other

agents. Each agent assigns a score to all matches. Score = profitabilityα · trust1-α where

(1-α) is defined as the weight attached to trust, and α ∈ [0,1]. In the case of a buyer, an

agent assigns a score to itself if it is able to produce the product that it wishes to sell.

This score is based on potential profit and trust. Agents also use an adaptable

importance measure that determines how important profitability is relative to trust. Any

suppliers not ranked higher than the buyer himself are not acceptable. Buyers send

requests to the most preferred suppliers, and suppliers accept requests from the most

preferred buyers according to the allowable number of matches. Buyers continue to

initiate requests until a supplier accepts.

 As discussed, agents rationally choose partners based on potential profits. A

buyer’s potential to generate profit is based on its position on the final market when it is

a seller. A supplier’s potential to generate profit is determined by the supplier’s

efficiency in producing for the buyer. This efficiency can increase as buyers and

suppliers gain knowledge of each other’s processes and make improvements during

www.manaraa.com

54

long-term relationships. Also, differentiated product allows buyers to increase profit

margin by acquiring lower acquisition costs or selling products that can be priced higher

to consumers. Trust is updated according to the law of diminishing returns during the

uninterrupted duration of the relationship, and is not decreased until a trading partner

defects from the supplier/buyer relationship.

 In their research, the authors allow for the buyers to adapt the values used for the

importance measure and the threshold of defection τ. They expected that adaptive

agents evolve to relatively high levels of trustworthiness, less frequent switching, higher

perceived commitment/trust, and a high weight attached to trust when evaluating

partners. As observed results, during the 1st 25 runs with fixed product differentiation,

the agents were found to migrate to three main locations in the problem space. The

authors plot the problem space on a two-dimensional grid where the x axis plots α, and

the y axis plots τ. Loyalty was decreased in the presence of a decreased weight attached

to trust (increased α, decreased τ), loyalty was unchanged in the presence of an

increased weight attached to trust (decreased α, stable τ), or loyalty was increased in the

presence of a decreased weight attached to trust(increased α, increased τ). This showed

that agents may place value on strategies of trust, loyalty, and opportunism. An

opportunistic agent may not gain a large amount of trust in the eyes of others because

the opportunistic agent continuously breaks relationships and switches partners.

However, such agents still receive profit based on the short term advantages of selecting

suppliers that help them increase profit margins through lower costs. Agents that place

www.manaraa.com

55

a high value on loyalty and profit achieve higher profit margins as a result of

improvements gained during long-term relationships. As a result, these agents will

appear to be more trusted in the eyes of their partners. An average of all 25 runs tended

to show regions of both higher and lower loyalty as well.

 Another example of modeling DAI to understand reasoning processes is the BDI

agent model discussed in Chapter 1. When a BDI agent forms an intention to achieve a

given goal, it does so by committing to a plan to achieve the goal. In general, the plan

is chosen from a plan library, which is composed of partial plans that are incomplete

and contain both actions and subgoals. [Griffiths and Luck, 1999] propose a way that

trust can be used as one of the deciding factors when choosing between competing

plans. In particular, this is very important when an agent must decide between a plan

requiring cooperation and a plan where cooperation is not necessary. The perceived

risk of cooperation with an agent is measured by trust.

R = 1/T , Risk is inversely proportional to trust. T ∈ [0,1]

 Each agent has a representation of other agents which forms part of the agent's

beliefs. This information is comprised of an agent id, agent capabilities (such as: able

to perform tasks, x, y, and z), and the trust value that the agent has in the other. Before

a plan can be chosen, both a standard and a cooperative rating must be calculated. The

standard rating can be assessed using heuristics such as "length of plans as the number

www.manaraa.com

56

of actions", "cost based on cost of actions", and "duration of plan execution based on

duration of individual actions". For the cooperative rating (if cooperation is not

necessary to perform the task, the rating will equal 0), agents in the set {α1, α2,αn,}

are ordered by trust such that T(αX-1) > T(αX). T(αX) denotes the trust that the trusting

agent has in agent αX. These agents are those that are found to have the capabilities

needed to perform the action. Thus, the risk associated with the action is 1/ (Σ from i =

1 to n of [T(αi)/i]). This avoids considering the most trusted agent only, which may

not be the actual partner at the time of execution. It also provides for the most trusted

agents to have a greater bearing on the risk of cooperating. For a plan with m actions,

a1, a2,....., am, the cooperative rating C = Σ(from i = 1 to m) R(ai).

 Once the ratings have been established, an overall plan quality measure Q is

calculated using Q = (ws * S) + (wc * C). The weights ws and wc vary for each agent

and have the effect of allowing them to have a deeper level of rationality. For example,

an agent that places a high importance on minimizing costs will place a greater

importance on the standard rating. The authors use the plan quality measure Q in two

distinct techniques to elaborate plans in the plan library with a "pre-execution

assessment" of the entire library. This can be accomplished while an agent is not

occupied, or when the change in trust of the other agents exceeds a threshold.

 As with [Marsh, 1994], the approach of the authors does not take into account

how trust in another agent is actually computed, but only that it is based upon factors

www.manaraa.com

57

such as agent capability or competence. One difference is that utility and importance

can be extracted out into the standard plan rating and kept separate from trust

derivation. While Marsh focuses on selecting a single agent to cooperate with,

[Griffiths and Luck, 1999] take into account all agents that can be cooperated with. The

advantage is that at execution time, we are not relying only on a single agent for

execution. Marsh also has no way of determining which agent to cooperate with if

more than one agent has a sufficient trust value. Griffiths and Luck do not either, but

are able to assess the risk of multiple potential partners as a whole when determining

plan selection. They ignore the issue of updating trust and deem situational trust as

being too computationally expensive. Whether or not this is the case, the authors will

allow for cooperation with the least trusted agent involved in the cooperative plan

rating.

This type of cooperation may not be desirable. However, situational trust could

provide a barrier against this. Since computational overhead might limit taking

situational trust into account for every action in the plan library, perhaps it might be

done only for tasks that have importance greater than a pre-defined threshold. In any

case, there are many similarities and differences between this usage of trust within BDI

agent architecture and the research investigated thus far. The main relevant concept for

this BDI architecture is that multiple plans are distinguishable in part through trust.

Multiple agents can be considered when cooperation is necessary, and as a result,

Marsh's work can be extended.

www.manaraa.com

58

In the example in Section 3.4.2, [Barber and Kim, 2001] showed that an agent

can use reputation as a measure of trust with respect to an information source. Even the

example of certificate-based trust benefits from reputation as unknown agents present

certificates issued by other agents who can vouch for its capabilities, identity, and

trustworthiness. [Barber et al., 2003] identifies key challenges for systems that employ

reputation-based trust models. Cooperation in uncertain environments exposes risk in

the form of inaccurate information or failed goal realization. Reputation-based

interactions that exist only through direct interaction between truster and trustee pose

risks until the trust model allows for recognition of an agent that should not be trusted.

This type of model forces agents to undergo repeated exposure to negative interactions

until trust values can converge to appropriate levels.

The second form of reputation is recommendation-based reputation. This form

of interaction is not dependent on direct interaction in the long-run. Risk is still present

because some default reputation value must be determined for agents that are totally

new and unknown to the system. This default value can only be computed through

direct interaction. An agent must also trust the recommendations received from other

agents, and at the same time, assess the trustworthiness of the source of the

recommendation. Agents must also have criteria that allow them to seek out other

agents who will provide recommendations. If an agent is not new to the system, direct

interaction must still occur to build the appropriate base of recommendations, and to

www.manaraa.com

59

allow those recommendations to deliver the accurate trustworthiness of an agent to

others. The authors identify recommendation-based reputation as advantageous over

direct interaction models. Overall, recommendations allow the truster to form

reputation without being exposed to the risks of direct cooperative interaction, and the

system as a whole has as cheap, low-risk way of communicating knowledge.

 As a concrete example, [Mui et al., 2003] provide experimentation to compare

the performance of agents that used varying reputation models. They describe

recommendation-based reputation as being derived indirectly or by word-of-mouth, and

having its value propagated through the system based on information from others. The

authors seek to discover which notion of reputation provides the highest utility using the

Prisoner’s Dilemma game. They identify four types of reputation modes: encounter-

derived (direct interaction), observed individual, group-derived, and propagated. In

observed individual reputation, agents designate a random number of other agents as

being observed. All encounters by these agents are observed and recorded. Reputation

is derived by dividing the number of times cooperation has occurred by the number of

defections. The only interactions used in the calculation are those between the observed

agents and the agent whose reputation is being calculated. For group-derived

reputation, all agents with the same characteristics such a cooperation strategy, are

grouped together in the eyes of the agent that is determining the agent reputation value.

As with the observed reputation measure, only the interactions between agents in the

group and the potential partner are counted. Reputation is determined by dividing the

www.manaraa.com

60

number of times cooperation has occurred with group members by the total number of

encounters with the given agent. Using propagated reputation, agents will recursively

ask past interaction partners for reputation estimates of the unknown partner whose

reputation must be calculated. For both group and propagation, after the first encounter,

all subsequent decisions are made using encounter-derived reputation. All agents have

a threshold of reputation below which they will defect instead of cooperating with an

undesirable partner. The authors found that propagated reputation outperformed the

other reputation-based strategies. One reason is that direct-interaction, as discussed

previously, does not converge fast enough to weed out undesirable partners. It was also

found that by expanding the number of recommendations gathered, performance was

further increased.

KMAS will use reputation as a measurement of trust and a determinant for

cooperation with potential partners. Trust will be updated through indirect and direct

revision. Indirect revision will occur when trust is updated based on the completion of a

cooperative task or action through direct interaction with an interaction partner. Direct

revision will be achieved through recommendation-based reputation which will be

performed for all unknown agents as a KMAS system default. KMAS execution can be

parameterized to perform direct revision for known agents as well. Recommendation-

based reputation will be propagated throughout the system as KMAS agents interact and

engage in cooperative tasks, and solicit the reputation of potential interaction partners in

the form of recommendations from other agents. The revision of trust provides the

www.manaraa.com

61

adaptive mechanism for intelligent, adaptive KMAS agents. The KMAS experiment

will seek to determine whether or not the KMAS model of recommendation-based

reputation will also be advantageous over a reputation model based solely on direct

interaction.

www.manaraa.com

CHAPTER 4 MACHINE LEARNING

SECTION 4.1: OVERVIEW

 The field of machine learning studies computational processes that result in

learning in both humans and machines. Machine learning has been used in problem

domains such as speech recognition, problem solving, data mining, motor control, and

game playing. [Langley, 1996] identifies four basic goals of researchers. The first goal

is psychological in nature. Researchers develop learning algorithms that model human

cognitive architecture, and by doing so, can use this knowledge to explain specific,

observed learning behaviors. An example is an artificial neural network which is

computationally analogous to the complex web of neurons in the human brain. The

second goal is empirical, and aims to discover general principles that relate the

characteristics of learning algorithms, and the domain in which they operate, to learning

behavior. This area of research basically compares and contrasts different learning

methods to provide generalizations about alternatives, methods, areas of weakness,

sources of task difficulty, and ideas for improved algorithms. The mathematical goal

involves formulating and proving theorems about the characteristics of entire classes of

learning problems and the algorithms applied to solve them. This goal is the

groundwork for developing a computational theory of learning. The fourth and final

62

www.manaraa.com

63

goal is the application of machine learning techniques to real-world problems. An

example would be automating the process of knowledge acquisition. This paper uses

the following definition of machine learning found in [Mitchell, 1997]. “A computer

program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, measured by P, improves with

experience E.” In the KMAS experiment, experience will be represented by direct

interactions between agents. Tasks are simple cooperative tasks involving an agent and

its interaction partner. As previously indicated, KMAS seeks to use trust as a

cooperation strategy to achieve the DAI goal of increasing task completion rate.

Performance will be measured by the task completion rate determined by successful or

unsuccessful outcomes of agent cooperation.

www.manaraa.com

64

SECTION 4.2: TYPES OF LEARNING

 Various forms of learning and feedback allow an agent to adapt its behavior or

learn new concepts. The following descriptions are widely accepted concepts, and one

or more terms can be found in most works contributing to the field of machine learning.

In terms of the generic machine learning definition proposed by [Mitchell, 1997], a

machine learning algorithm learns from experience in the form of a set of training

examples. In an example learning problem, an algorithm can be designed that will

allow a system to learn verbal commands after repeatedly receiving input from various

users, and processing electronic speech patterns. After training concludes, each new

instance of the problem domain must be classified by generalizing beyond the training

data. Each classification is directly related to the tasks T and the performance measure

P. Generalizing in computational terms may be described as using the training data as

input to approximate the learned target function. This generalization can occur in two

ways. In lazy learning, generalizing is done at runtime for each new instance of the

problem. Eager learning techniques generalize beyond the training data before any

instances are classified. In this latter case, after training ends, there is a fixed global

approximation of the target function. This can be found, for example, in the fixed

network weights established by Artificial Neural Networks that are used to classify all

new problem instances. k-Nearest Neighbor is an example of a lazy learning method.

Such methods are advantageous from the standpoint of not being constrained to a global

approximation of the target function. Lazy methods can use many local approximations

www.manaraa.com

65

to the target function. This is helpful in instances where global approximations may be

over fitted to a certain area of the search space, and do not perform well outside this

area.

 Learning strategies can be described by five areas of distinction in terms of how

learning is acquired. In rote learning, direct implantation of knowledge and skills is

given without requiring further inference or transformation from the learner. Through

learning from instruction and by taking advice, a learner can transform knowledge into

an internal representation, and combine it with existing knowledge and skills. Learning

from examples and practice allows existing knowledge and skills to be refined by

positive and negative examples or practical experience. The KMAS system will use

learning from examples and practice to refine knowledge about other agents in the form

of trust. Learning by analogy allows solutions for unsolved problems to be derived

from similar, solved problems. The last strategy, learning by discovery, allows for the

gathering of new knowledge and skills by observations, conduction experiments, and

the generating and testing of hypotheses or theories based on observed and experimental

results.

 Feedback allows the learner to measure performance levels achieved so far with

respect to the class of tasks in T. In supervised learning, the feedback specifies the

desired activity of the learner. The objective of learning is to match the desired action

as closely as possible. An example of this was found in the VIENA system to correct

www.manaraa.com

66

agent actions. The system as a whole received supervised learning in the form of user

supplied language such as “a bit less”. In reinforcement learning, feedback only

specifies the utility of the actual activity of the learner and the objective is to maximize

this utility. Feedback is given by a critic that has the ability to determine appropriate

utility measures. The learning agents in VIENA are given this type of feedback in order

to place credit or blame for agent actions that result in correct or incorrect system

responses. Unsupervised learning does not have explicit feedback. Agents must learn

to improve performance by trial and error or self-organization. In the KMAS

environment, agents learn the trustworthiness of other agents through direct interaction

by practical experience (unsupervised learning), and by using indirect-supervised

learning where other agents are advisors. Classical supervised learning allows teachers

to provide target function classifications based on examples. In the traffic signal

research which will be presented in the next section (Section 4.3), it is suggested that

peer advice can provide output that can be back-propagated to update neural network

weights in an advisee agent that is requesting advice from advisors. For KMAS,

neighbors are actually providing advice that is input into the target function (which is

the act of computing k-nearest neighbor) instead of providing the result of the

application of the target function. In this paper, this type of process is described as

indirect-supervised learning because inputs in this sense are one step removed from the

target function classification.

www.manaraa.com

67

SECTION 4.3: MAS LEARNING

 As demonstrated by VIENA, there are advantages to developing multi-agents

systems that learn and adapt. In VIENA’s case, a single system can learn to adapt to

multiple users. A further development of this area of adaptive systems exists in the

combining of the fields of machine learning and multi-agent systems. Merging the two

areas of research presents distinct challenges as well as advantages. Specifically, in

[Vidal, 2003], it is stated that the definition of machine learning is essentially violated

within multi-agent systems because an agent is no longer learning from a fixed set of

experiences (training examples). Since E changes, the learned target function changes.

[Singh and Huhns, 1997] identify differences between challenges faced by traditional

machine learning research and research involving machine learning within cooperative

agent systems. In a traditional agent-based, machine learning system, an agent must

learn and adapt to an environment that is passive and has no intentions. The agent may

also have imprecise sensors that cause it to learn inaccurate information about the

environment. In machine learning with systems of multiple agents, an agent learns

about its environment which is active, because it includes other agents who have

intentions, commitments, beliefs, abilities, and can also learn. An agent might also be

deliberately misled about the environment by other agents. The different challenges

highlight the fact that learning has moved from being single-agent oriented to multi-

agent oriented. [Weiss, 1995] describes the two types as isolated learning and

interactive learning, respectively. Agents in a MAS can learn communally because

www.manaraa.com

68

learning can be influenced by exchanged information, shared assumptions, commonly

developed viewpoints of their environment, and commonly accepted social and cultural

conventions and norms. Weiss also identifies two problems that researchers must

address when determining the source of impact on performance. Credit (or blame) for

an overall performance change must be assigned to an external agent to agent

interaction, or credit (or blame) for an action must be assigned to an internal agent

decision.

 There are two major areas of application of machine learning techniques to

multi-agent systems: learning to coordinate or cooperate, and learning from other

agents through the exchange of information (cooperative learning) to improve learning

performance of each agent, or the system as a whole. [Nunes and Oliveira, 2003] seek

to perform the latter by modeling human cooperative learning in a team based on the

exchanging of advice. The authors employ agents that are heterogeneous with respect

to learning algorithms in the hope that different algorithms solving similar problems

may lead to different forms of exploration of the same search space, increasing the

probability of finding a good solution. The problem domain is a simplified traffic-

control problem where each agent must control four traffic lights at an intersection.

Learning parameters are adapted using two methods: 1) reinforcement-based,

unsupervised learning using a quality measure that is directly supplied by the

environment, and 2) supervised learning using peer advice as the desired response.

Agents request advice when their current average quality since the beginning of the

www.manaraa.com

69

present time epoch drops below a certain percentage of the best average quality reported

by its peers at the beginning of the present epoch. Average quality is assessed at the

beginning of each green-yellow-red traffic cycle. Quality is determined by how well

the agent has managed the traffic flow. When advice is requested, the advisee sends the

current state of traffic to the advisor who has the best overall score reported at the start

of epoch. The advisor then switches its internal learning representation back to what

was reflected at the beginning of epoch, and runs the state communicated by the advisee

to give advice in the form of a suggested response to the current state. For a neural

network implementation, this would simply involve setting the network weights back to

the values present at the beginning of the epoch for the advisor. The advisee would

then use the response to update its own internal learning representation. In the case of a

neural network implementation, the advisor’s response would be backpropagated to

adjust network weights accordingly. The researches found that advice exchange causes

a fast increase of quality at early stages as good responses are shared. After comparing

against agents that employed stand-alone, isolated learning, it was found that advice

seeking agents fall less commonly into local optima because they are better at

overcoming bad initial parameters. This is due to the fact that supervised learning

allows exploration of more promising regions of the search space. This is an important

benefit of supervised learning that will be discussed in Section 5.2.3 with experiment

examples where KMAS performs direct revision for known agents.

www.manaraa.com

70

 Along with cooperative learning, researchers have found machine learning

techniques as valuable tools to aid in the coordination process of multi-agent systems.

Traditional coordination mechanisms such as negotiation must rely heavily on

communication between agents. [Bazzan, 1997] identifies this communication

bottleneck as a major shortcoming in existing coordination frameworks. Bazzan hopes

to demonstrate research that minimizes or even eliminates the need for communication

when coordinating agent activities. Like our first example, the problem domain is

traffic-control, but only one learning technique is used, and agents do not communicate.

Agents only know their own utility payoffs, and not those of others. Reinforcement

learning is applied by way of a critic, “nature”, that provides local and global payoff

utility. The global payoff utility acts as an incentive to coordinate toward the global

goal of stabilizing coordination such that traffic flows as long as possible without

stopping at red lights.

 The learning algorithm is a genetic algorithm that models strings of chosen

strategies employed in the past. During the learning process, a fitness for each string is

computed, and this influences the next generation of strategies used. Fitness is

determined by calculating the cumulative payoff of a specific strategy available, with

increasingly discounted payoffs for strategies chosen farther in the past. This specific

strategy is then compared against the cumulative payoffs of all strategies. Payoff is

only calculated for the time interval between the current learning period and the last

time period where a change in normal traffic pattern was determined. At the beginning

www.manaraa.com

71

of each time step, if a change in local or global traffic pattern has not occurred, and a

learning period has not started, each agent will act according to a strategy chosen by

fitness. This strategy will yield a payoff determined by nature, and will be used in

subsequent learning periods. If a change in normal traffic pattern occurs, strategies are

chosen according to the direction of the highest flow of traffic. A strategy simply

corresponds to giving more green time to a certain direction of the traffic flow.

 The researchers found, not surprisingly, that coordination is reached faster when

global traffic pattern seldom changes. It was also found that higher learning frequency

(more learning periods) provided a good counter measure to environments with higher

rates of individual traffic pattern changes at each intersection.

www.manaraa.com

72

SECTION 4.4: MACHINE LEARNING and TRUST

The similarities between trust and machine learning research provide interest in

research aimed at combining the areas of trust, machine learning, and multi-agent

systems. In particular, this paper will now present research that uses an adaptation of

the k-Nearest Neighbor machine learning algorithm described later in Section 4.1 to

provide recommendation-based reputation of unknown agents. The nearest neighbor

algorithm will allow the intelligent agents to reason about the trustworthiness of other

agents along with direct interaction-based reputation and a trust update function. The k-

Nearest Neighbor algorithm is also part of the adaptive mechanism of KMAS agents. It

is theorized that recommendation-based reputation of unknown agents can provide

some protection from non-benevolent and potentially malicious interaction partners

within multi-agent systems.

www.manaraa.com

CHAPTER 5 K x N TRUST-BASED AGENT REPUTATION

SECTION 5.1: k-NEAREST NEIGHBOR and EXPERIMENT
HYPOTHESES

 In [Mitchell, 1997], the k-Nearest Neighbor learning algorithm is described as a

lazy learning method that uses stored training examples that are similar to the new

instance that needs to be classified. The algorithm assumes that all instances

correspond to points in the entire instance or problem space. The nearest neighbors are

the k closest training example instances with respect to the Euclidean distances between

k neighbors and the new instance. The nearest neighbor values are used to make a local

approximation of the target function.

 k-Nearest Neighbor is performed by one agent learning in isolation. In this

paper, we first adapt k-Nearest Neighbor by changing it to (k X n) Nearest Neighbor.

Because the agent is now learning in an interactive environment, other agents are

learning as well. If there are n agents in the system that are learning one at a time, then

(k X n) neighbors are used to approximate n target functions. In our research, each

agent must classify an unknown agent as being either trusted, or distrusted. A simple

application of (k X n) would be to store instances composed of a tuple containing agent

73

www.manaraa.com

74

characteristics, an action, and a classification of that instance with respect to the target

function. A new instance would be approximated as being trusted or distrusted

according to the classifications provided by the k-nearest neighbors. In Section 5.3,

future research, an implementation of KMAS is proposed that would use tuples of agent

characteristics.

The second adaptation in this paper is more radical. This paper is focused on the

Euclidean position of the agents themselves within the search space which might also

be called the “instance space”, or the “agent space”. We can still choose neighbors

based on their agent characteristics, but these characteristics must be close in Euclidean

distance to the agent that needs to perform the classification as opposed to being closest

to the agent that needs to be classified. As in [Primeaux, 2000], this models increased

trust in neighbors who are “alike”. In human society, this is similar to the increased

trust that one would have in human neighbors situated in the same living environment

and persons that are similar in characteristics such as age, occupation, social status,

income, etc.

In this research, the local approximation of a target function changes from being

derived from unsupervised learning examples, to being derived from advisors engaged

in indirect-supervised learning. Learning is an activity that each agent and the system

as a whole participate in. Each agent classifies others using a trust-updated function

refined by the feedback of other agents after execution of k-Nearest Neighbor. If the

www.manaraa.com

75

system were viewed as a single agent with the task of coordinating system components

such that harmful interactions were not allowed to occur, it would be expected that the

emergent property of the system as a whole would be the learning of all untrustworthy

agents. Learning would be achieved by an application of k-Nearest Neighbor, where

the coordinated system components are learning, adaptive agents in the system

environment, neighbors are agent advisors that provide trust recommendations, the

target function represents the trustworthiness of an individual agent, and training

consists of interactions that occur during system life cycles.

Using the two adaptations of k-Nearest Neighbor, this research attempts to

investigate the benefits of using (k X n) Nearest Neighbor as a model of

recommendation-based agent reputation. As stated in Section 4.4, it is theorized that

recommendation-based reputation of unknown agents can provide some protection from

non-benevolent and potentially malicious interaction partners within multi-agent

systems. The following hypotheses represent the foundation for experimentation that

this paper will discuss. The experiment results will be used as an attempt to justify or

explain the benefits that may arise during the usage of the KMAS model and (k X n)

Nearest Neighbor.

www.manaraa.com

76

Hypotheses:

• 1.1 - A system performing k-Nearest Neighbor will outperform a system that

does not perform k-Nearest Neighbor, where performance is measured by the
system’s ability to only allow cooperation between a requester agent and a
partner that is non-deceptive.

• 1.2 - Over time, a system using trust-based agent recommendation will converge

towards a state where cooperation with deceptive agents will not occur.

• 2.1 - The number of executed life cycles needed to reach maximum failure rate

will decrease as the number of nearest neighbors increases, despite randomness
in both interaction relationship pairings and when new agents are made active in
the system.

• 2.2 - Curve slope, as a measure of average velocity and calculated by (y2 – y1 /

x2 – x1) where y’s represent the range of failure rates and x’s represent the range
of time steps, will increase as the number of neighbors increases.

• 2.3 - As the number of neighbors increases, elapsed time in life cycles between

the maximum failure rate and the benchmark failure rate (Elapsed TimeB) will
decrease as the number of neighbors increases.

• 3.1 - The number of executed life cycles needed to reach maximum failure rate

will decrease as the learning rate decreases, allowing more exploration.

• 3.2 - - Curve slope, as a measure of average velocity and calculated by (y2 – y1 /

x2 – x1) where y’s represent the range of failure rates and x’s represent the range
of time steps, will increase as learning rate decreases (exploration increases),
indicating a greater return. This result is expected for both time periods between
max failure rate and relative convergence (Elapsed TimeR), as well as the period
between max failure rate and the benchmark failure rate (Elapsed TimeB).

• 3.3 - Elapsed time between the maximum failure rate and the benchmark failure

rate (Elapsed TimeB) will decrease as the learning rate decreases.

www.manaraa.com

77

SECTION 5.2: KMAS

5.2.1 EXPERIMENT DESCRIPTION

Terms and Definitions

KMAS – An MAS that uses the k-Nearest Neighbor algorithm where
nearest neighbors are agents ai,……,ak where a is an agent in A, the set
of all agents active in the MAS.
ETIP – Experimental trial input parameter file. The file that determines
execution parameters to execute life cycles in the KMAS experiment.
LIFE CYCLE – A single execution of the KMAS environment where
inter-agent interaction will take place.
LEARNING RATE – ηl, the number of life cycles between trust
explorations is equivalent to learning rate – 1, or exploration occurs
during every ith life cycle where the integer i is the learning rate.
EXPLORATION – The process of performing the k-Nearest Neighbor
algorithm for known agents. Determined by learning rate. During
exploration, recommended trust values (agent reputation) replace general
trust if reputation is the lower of the two values. Exploration increases
as the learning rate decreases.
INTERACTION – The process of selecting a partner and engaging in
cooperation with that partner if cooperation is desired. If cooperation is
refused by the requester, this is still part of the interaction process.
COOPERATION – The process of participating with another agent
(partner) to accomplish some goal or task through interaction.
BASIC TRUST – Tx where basic trust is the trusting disposition of
agent x towards society. A global attribute as defined in Section 3.2.
BASIC RISK – Rx where basic risk is the disposition of agent x towards
involvement in potentially harmful interactions with deceptive
interaction partners. A global attribute as defined in Section 3.2.
SITUATIONAL TRUST – Tx(y,αx) where situational trust is the
calculated trustworthiness of agent y during interaction α from the
perspective of agent x. Tx(y,αx) ∈ Q : 0 ≤ Tx(y,αx) ≥ 1.0,
Tx(y,αx) = (Tx)(Tx(y))
GENERAL TRUST – Tx(y) where general trust is the general
trustworthiness of agent y in the eyes of agent x.
Tx(y) ∈ Q : 0 ≤ Tx(y) ≥ 1.0
TRUST UPDATE RATE – ηtu where trust update is a term used to
scale the impact of successful or unsuccessful interactions on general
trust.

www.manaraa.com

78

DECEPTION – Degree or level of agent deceptiveness or propensity to
act deceptively or defect during a cooperative task or goal.
DECEPTIVE THRESHOLD – A measure of deceptiveness where a
deceptive agent will practice deception if its personal level of deception
is above this value.
TIME STEP – Unit of time equivalent to the time needed to execute one
system life cycle.
REQUESTER or REQUESTER AGENT– An agent that initiates a
request for interaction by selecting an exclusive, potential interaction
partner among the active agents in KMAS. An agent designated as a
requester cannot be selected by another requester agent during the same
life cycle.
RELATIVE CONVERGENCE – The point at which subsequent
KMAS executions (life cycles) are completed without the presence of
interactions with harmful/deceitful agents, or such interactions occur in
“extreme rarity”, where “extreme rarity” is subjective to the conductor of
the experiment.
UNKNOWN AGENT – From the perspective of a requester agent, an
unknown agent is an agent that has not been interacted with.
FAILURE RATE – Cumulative measurement of system performance at
a given life cycle. Determined by taking the total number of failures
experienced during KMAS current and prior executions, and dividing it
by the current time step which also serves as the elapsed time in
execution life cycles.
MAXIMUM FAILURE RATE - The maximum observed failure rate
among trial time steps after initial, local max failure rates have been
produced. Local max failure rates may occur when an agent first begins
activity in the system. Early interactions may involve many encounters
with deceptive agents, thus producing an artificial maximum failure rate.
In these cases, failure rate will decrease, then peak again at a later time
step. The latter time step is chose as the maximum failure rate.
K[x] – indicates the usage of the k-Nearest Neighbor algorithm in an
experiment trial where x is the number of nearest neighbors allowed. If
n is equal to zero, the effect is that k-Nearest Neighbor is never
performed.
KE[x,y] – indicates the usage of the k-Nearest Neighbor algorithm with
exploration in an experiment trial where x is the number of nearest
neighbors allowed, and y is the value for exploration equivalent to the
learning rate ηl.

www.manaraa.com

79

Experiment Overview

KMAS represents an attempt to model an environment of intelligent,

autonomous, rational, adaptive, and cooperating agents within a MAS distributed agent

architecture. The KMAS agents use machine learning and a trust update function to

reason about whether or not to cooperate with other agents on the basis of

trustworthiness, and to adapt to the dynamic nature of trust. The agents use k-Nearest

Neighbor as a machine learning algorithm to model recommendation-based agent

reputation where reputation of individual agents is propagated throughout the system.

Reputation is used as a measure of trust that is updated as agents revise their beliefs

about other agents. Agents learn the trustworthiness of other agents through direct

interaction by practical experience, and by using the nearest neighbor algorithm as a

form of indirect-supervised learning where other agents are advisors. The KMAS

system as a whole learns by performing the nearest neighbor algorithm n times where

the integer n is the number of active agents performing local k-Nearest Neighbor at a

given time step of execution. KMAS performs (k Χ n) Nearest Neighbor to improve

performance in terms of only allowing cooperation with trusted agents. Thus, KMAS

uses trust as a cooperation strategy. The system goal is to converge towards a system

state that only allows cooperation between a requester agent and a non-deceptive agent.

In order for this to occur, any requester agent must recognize a deceptive agent as

untrustworthy. A “deceptive agent” is defined as an agent that will defect from a

cooperative task after it is assumed to be committed to the interaction. As a

consequence, cooperation with a deceptive agent will result in failure.

www.manaraa.com

80

Cooperative tasks are assumed, but not defined. Upon completion of agent cooperation,

the result of the assumed task is reported as a success or failure to the requester. It is

theorized that agents performing the k-Nearest Neighbor algorithm will increase task

completion rates by avoiding harmful interactions with “deceitful” agents and will

outperform systems that do not use recommendation-based reputation.

All experiments in this research used the same fixed inputs and the contents of

file fixedIn.txt which is explained later in this section. Additionally, some ETIP file

inputs (also explained later in this section) were fixed. These fixed inputs describe the

number of agents in the MAS, the maximum number of executable time steps, the

maximum number of agents initially active in the MAS, the number of deceptive

agents, weights used in the k-Nearest Neighbor algorithm (age, successful tasks, basic

trust, and risk), and the rate of trust update. The number of agents in the MAS differs

from the number of agents initially active. Upon creation of the KMAS environment, a

“pool” of available agents is created. The maximum number of agents in the “pool” is

equivalent to the fixed input value that describes the number of agents in the MAS.

KMAS randomly selects agents from the agent pool until the maximum number of

allowable, “initially active” agents is met. An “initially active” agent is an agent that is

allowed to execute within the KMAS environment starting at the beginning of the first

time step. Initially “inactive” agents are not allowed to execute until they are randomly

chosen after completion of the first time step. Input values that are allowed to change

are the number of nearest neighbors as described by the value x in the definition of the

www.manaraa.com

81

symbol K[x], and the exploration value identified by the learning rate ηl or the symbol

KE[x,y], where y is equivalent to the learning rate.

 Although fixed inputs were used, a discussion is warranted to describe the

effects of changing the values of these inputs. What is the effect of adding more or less

agents and maximum time steps to experiment input? In general, one could expect that

adding more agents to the KMAS environment may aid an agent in its goal of avoiding

harmful interactions. Because agents randomly select other agents as potential

cooperative partners and share interaction experiences in the form of reputation, an

assumption can be made that by the time an agent randomly selects a deceitful agent,

enough interactions have occurred with neighbors to properly model a reputation of

“distrust”. This is based on a statistical assumption that as the number of active agents

in the system increased, the chances of choosing a deceitful agent as a potential partner

decreases if the number of deceitful agents remains fixed. However, the first

assumption is possibly flawed if the number of nearest neighbors is not increased along

with the number of agents in the MAS. Based on recorded and unrecorded experiment

results, adding more agents and maximum executable time steps creates more

opportunities for meaningful and measurable experiment results. In particular, a

minimum number of time steps is needed to allow KMAS system convergence as

described in the beginning of the experiment overview.

www.manaraa.com

82

 As described in Section 5.1, neighbors are chosen based on the Euclidean

distance between the characteristics of the agent soliciting reputation, and the agent

characteristics of prospective neighbors. In this research, the agent characteristics or

attributes are defined as age (number of time steps the agent has been active), successful

tasks (the number of cooperative tasks resulting in success), basic trust, and basic risk.

The nearest neighbor algorithm calculates the Euclidean distance based on these

attributes and weights. The weight of each attribute decreases or increases its

contribution to the Euclidean distance. Although arbitrarily fixed and unstudied for

purposes of this research, the usage of weighted agent attributes may be an important

way to measure the behavior of certain classes of agents. This is discussed in Section

5.3, Future Research.

 The final fixed input that produces an impact, if changed, is the trust update rate.

Trust (here general trust) is updated based on direct interaction if a partner is unknown.

Before the addition of the trust update rate, trust was discounted too quickly towards

total “distrust”, represented by a low general trust value. A low general trust value

produces a low situational trust value. In early experiments, this had the effect of

stopping interactions with deceptive agents after the first interaction experience.

Although desirable in concept, this was not conducive to recording and measuring

experiment results. During experiments where exploration was used, the absence of a

trust update rate did not allow the acceptance of recommended trust values from nearest

neighbors. The reason is that general trust was already lower than the calculated

www.manaraa.com

83

reputation value which was based on an average of neighbor responses. During periods

of exploration, the lower trust value will be accepted as the new general trust value, and

will be used in subsequent calculations. A lower trust update rate produces a smaller

increase or decrease of general trust after cooperation.

After all fixed inputs were chosen, three experiments were performed. Within

each experiment, each execution of KMAS with a unique set of inputs represents one

trial. In all, three trials are defined for each experiment. Upon execution of each trial

once, the results are grouped together and repeated to create experiment groups A, B,

and C for each experiment. Each group represents an execution of three trials.

Experiment 1 compares KMAS execution with that of a MAS that does not use the

nearest neighbor algorithm. Experiment 2 compares KMAS with different numbers of

allowable nearest neighbors per trial. Experiment 3 compares KMAS with different

values for exploration in each trial. To measure performance, relative convergence will

be used as a point in time. As defined previously, relative convergence is the point at

which subsequent KMAS executions (life cycles) are completed without the presence of

interactions with harmful/deceitful agents, or such interactions occur in “extreme rarity”

where “extreme rarity” is subjective to the conductor of the experiment. Relative

convergence is measured in elapsed life cycles. For example, a relative convergence

point of 1000 indicates that relative convergence has been reached at the 1000th life

cycle or time step. Additionally, a benchmark failure rate is used for performance

comparisons as well. The benchmark failure rate is an actual, measured failure rate

www.manaraa.com

84

recorded in the failure rate log as described in the list of experiment reports found later

in this section. Time is defined as elapsed or completed system life cycles. Each trial is

depicted by a graph where the y axis represents failure rate, and the x axis represents

time in life cycles with an offset of + 1 where life cycle 0 (first executed life cycle

according to the failure log) is recorded as time step 1.

Experiment Inputs

fixedIn.txt (See Appendix A)

1) Basic Trust, where Tx ∈ Q : 0 ≤ Tx ≥ 1.0
2) Risk (same as Basic Risk), where Rx ∈ Q : 0 ≤ Rx ≥ 1.0
3) Deception, where dx ∈ Q : 0 ≤ dx ≥ 1.0
4) Deceptive Threshold, where dTx ∈ Q : 0 ≤ dTx ≥ 1.0

In all experiments, the following values were used:

1) Basic Trust = 0.9
2) Risk = 0.25
3) Deception = 0.1
4) Deceptive Threshold = 0.0

Command line file input for trial parameters (ETIP)
(See Appendix B)

1) MAS_Size – Maximum number of active agents allowed in the

system.
2) TimeSteps – Maximum number of system execution (life)

cycles.
3) NumAlive – Number of agents active in the system at the

beginning of execution.
4) NumK – Number of nearest neighbors used by the k-Nearest

Neighbor algorithm.
5) NumDeceptive – Maximum number of deceptive agents allowed

in the system.
6) WeightAge – Euclidean distance weight for age attribute.
7) WeightSuccessfulTasks – Euclidean distance weight for

successful task attribute.

www.manaraa.com

85

8) WeightBasicTrust – Euclidean distance weight for basic trust

attribute.
9) WeightRisk – Euclidean distance weight for risk attribute.
10) TrustUpdateRate – where ηtu ∈ Q : 0 ≤ ηtu ≥ 1.0
11) LearningRate – where ηl ∈ Z : 0 ≤ ηl where 0 is the absence of

learning or exploration.
12) Debug – Y or N, debug mode to print agent cooperation logs.
13) Outfile – path/filename, execution report of failure rate by time

step.
14) FixedInput – Y or N, to determine usage of fixed inputs.
15) FixedInputFile – path/name/extension of fixed inputs.
16) FixedDeception – Y or N, to determine if fixed input for

deceptive agents will be captured from the fixed input file or
bypassed. If set to N, deceptive agents will change the value for
deceptive threshold.

Experiment Reports

Failure Rate Log (See Appendix C)

1) This log captures the number of active (“alive”) agents in the

system, the number of active, deceptive agents, number of
failures, and the cumulative failure rate by completed time step.

2) The file is named using the Outfile parameter of the ETIP file,
concatenated with “failures.”, mmddyyhhmmss date format, and
a “.txt” extension.

Initial Values (See Appendix D)

1) This log echoes contents of the ETIP file.
2) Named using the Outfile parameter of the ETIP file, concatenated

with “init” and a “.txt” extension.
3) This log lists the beginning values of each agent and records:

a. Agent ID
b. Alive – a Boolean to indicate if the agent is active
c. Partner – internal agent variable indicating if the agent

currently has a partner. Initially -1 before interactions.
d. Deceptive – valued as either 0 or 1. 1 indicates a deceptive

agent.
e. If deceptive, Deception Level and Deception Threshold are

shown.
f. Basic Trust

www.manaraa.com

86

g. Risk

Agent Cooperation Log (See Appendix D)

1) This log traces cooperation history of each agent during KMAS

execution if debug mode is set to “Y” in the ETIP file.
2) This file is named using the Outfile parameter of the ETIP file,

concatenated with “Agent”, agent id, and a “.txt” extension.
3) The information recorded in this log includes:

a. Time Step
b. Agent Age
c. Alive – a Boolean to indicate if the agent is active
d. Agent ID
e. Requester Agent – a Boolean to indicate if the agent is a

requester of interaction or a requested partner
f. Total Successes – cumulative number of interactions with

successful cooperation results
g. Total Failures – cumulative number of interactions with

cooperation results recorded as failures
h. Has Partner – a Boolean to indicate if the agent has an

interaction partner at this time step
i. Partner ID
j. Nearest Neighbors – listing of the agent ID’s of the nearest

neighbors if performing k-Nearest Neighbor at this time step
k. Basic Trust
l. Old General Trust in Partner – general trust before

cooperation, or general trust after performing k-Nearest
Neighbor

m. New General Trust in Partner – general trust in partner
after cooperation and trust update

n. Situation Trust
o. Risk
p. Will Cooperate – a Boolean to indicate if the agent

requesting interaction will cooperate
q. Success – a Boolean indicating if cooperation resulted in

success or a failure
r. Num Success with Partner – cumulative number of

successes with the selected interaction partner in previous
time steps, and including the current time step

s. Num Failure – cumulative number of failures with the
selected interaction partner in previous time steps, and
including the current time step

www.manaraa.com

87

Order of Execution

Create the fixed input file by executing class CreateFixedInputs with command

line parameters of two integers (example: java CreateFixedInputs 5 2). The first

should be the number of agents that matches the ETIP file parameters. The second

integer should be the number of deceptive agents found in the ETIP file. The fixed

input file can be modified if desired. The filename and path of the fixed input file is

fixed within the compiled code of class CreateFixedInputs.

 Execute class ThesisKmas for each trial desired by specifying the path and

filename of the ETIP file on the command line (example: java ThesisKmas

c:\javatst\exampleTrial.txt). Results can be viewed by looking at the time-stamped

outfile specified in the ETIP file. If debugging is turned on, each agent will have an

associated cooperation log as specified in the reports section.

Execution Flow by Java Program Object (Class)

class CreateFixedInputs (See Appendix E)

1) Receives two integer command line inputs, one equal to the

maximum number of agents in the MAS, and the other equal to
the maximum number of deceptive agents in the MAS.

2) Outputs two column rows up to the maximum number of agents
with the first column consisting of basic trust values, and the
second consisting of risk values. All values created using a
random number generator.

www.manaraa.com

88

3) Outputs two column rows up to the maximum number of

deceptive agents with the first column consisting of the agent’s
level of deception, and the second consisting of the agent’s
deceptive threshold. All values are created using a random
number generator.

class ThesisKmas (See Appendix F)

Drives KMAS experiment trial execution

1) Receives command line input that specifies path and name of the

ETIP file.
2) Creates a KMAS object which is the executable experiment trial.
3) Feeds ETIP file contents into the KMAS experiment

environment.
4) Populates KMAS with randomly selected agents from the pool of

available agents, and activates them according to the number of
initially “alive” agents specified in the ETIP file.

5) Randomly selects active agents and makes them deceptive
according to the number specified in the ETIP file.

6) Executes KMAS according to the maximum number of time
steps specified in the ETIP file. Outputs cooperation log if in
debug mode as well as a listing of initial agent values.

7) Outputs failure rate log.

class Kmas (See Appendix G)

Executable experiment that defines the MAS and the necessary methods
to execute one experiment life cycle.

1) After instantiation by class ThesisKmas, receives and stores ETIP

file contents.
2) Creates all agents and randomly sets a maximum number of

agents to be initially active in the system. Once an agent is made
active, it stays active.

3) Randomly selects a set number of agents to be deceptive.
Initially, deceptive agents can be active or inactive.

www.manaraa.com

89

4) Uses contents of fixed input file to give basic trust, risk,

deception, and deception threshold values to all agents if ETIP
file parameter FixedInput is set to Y. If not, random values are
created using a random number generator. If fixed deception is
turned on, deceptive agents receive values for deception and
deceptive threshold. If ETIP file parameter FixedDeception is
N, random values are given and each agent agent will produce a
new deceptive threshold value each time cooperation is required.

5) At the beginning of time step (life cycle), randomly adds or does
not add a new agent to the system by making a non-active agent
active. Resets agent cooperation variables to default (agent ID of
cooperative partner, decision to cooperate, “has partner” flag,
cooperation success flag, requester agent designator flag).

6) Initiates interaction between requester agents and selected
partners and outputs to cooperation log if in debug mode.

7) Records and stores data needed to create the failure rate log.

class KmasAgent (See Appendix H)

Encapsulation of a single intelligent agent with the functionality needed
to perform k-Nearest Neighbor, store and update trust values for known
interaction partners, find potential partners as an agent requesting
interaction, decide if cooperation with a selected partner is desired based
on situation trust and risk, determine the results of cooperation as being
success or failure, and practice deception if the agent is a deceptive
agent.

1) If deceptive, receive values for agent level of deception and

deceptive threshold through fixed input or random values. The
choice is based on the FixedDeception flag in the ETIP file.

2) If a requester agent, class KMAS will direct the agent to find a
potential partner through random selection. Once the partner is
selected, the partner will be locked into an exclusive partnership
and agent ID’s will be exchanged.

3) Starts cooperation decision logic by using trustworthiness of
selected interaction partners. If partner is unknown, or
exploration is desired, perform k-Nearest Neighbor algorithm
using Euclidean distance with weighted variables age, successful
tasks, basic trust, and risk to select k neighbors.

4) Calculates situational trust to determine if cooperation is
warranted.

www.manaraa.com

90

5) If cooperation is warranted, cooperate, and store the result of

cooperating. If the agent is an interaction partner, defect if dx >
dTx.

6) Uses the result to update general trust and cumulative totals of
successful or non-successful (failures) cooperation results as a
whole, and also by the interaction partner involved in the
cooperative activity.

Cooperation Decision Logic

 Cooperation is coordinated through class KMAS by determining the maximum

number of possible interaction partnerships consisting of active agents, and then

randomly selecting which agents will initiate interaction requests. The requester agents

are then directed to find and interact with potential cooperative partners. Once a

requester agent has found a partner, it must then use the cooperation decision logic to

first decide if the agent (partner) is trustworthy. All agents store trust values for all

known agents. If an agent has a potential cooperative partner where trust is unknown,

trust in that agent is initialized to 0.0. If a partner is unknown, or exploration is desired,

k-Nearest Neighbor is performed using Euclidean distance with weighted variables age,

successful tasks, basic trust, and risk to select the closest k neighbors. In the absence of

exploration, the k-Nearest Neighbor algorithm is performed only once by a requester

agent. Afterwards, the partner is known and subsequent trust updates are performed

through the result of direct interaction. If the interaction partner is unknown by all

neighbors, trust in the current partner is set to .50, representing a 50% chance that the

unknown agent is trustworthy. If the partner is known by at least one neighbor, general

trust becomes the average value among all contributing neighbors. If the current time

www.manaraa.com

91

step is a period of exploration, the general trust recommendation from the k-Nearest

Neighbor algorithm is used regardless of whether or not the agent is known. The

recommended general trust value is used if it is less than the general trust value already

stored for a known partner. If the partner is unknown, it is equivalent to using k-

Nearest Neighbor without exploration for unknown partners.

 After k-Nearest Neighbor is performed or not performed, situational trust is

calculated. Situational trust represents the trustworthiness of the interaction partner in

the eyes of the requester. Cooperation has not yet taken place, and the requester agent

must decide whether or not the risk warrants participating in the cooperative task.

Situation trust is calculated by the equation Tx(y,αx) = Tx(Tx(y)) where αx is the current

interaction between requester agent x and interaction partner y. If situational trust is ≥

Rx, x’s general disposition to risk, agent x will decide to cooperate, and will record the

results of cooperation. If agent y is non-deceptive, successful cooperation will be

recorded as true. If agent y is deceptive, and its level of deception is greater than its

deceptive threshold, successful cooperation is false and a failure will be recorded. If the

experiment is not in fixed deception mode, each time a deceptive agent is involved in a

cooperative task, the deceptive threshold is given a random value such that a deceptive

agent will not practice deception in every partnership. In this research, all experiment

trials use fixed deception mode. After cooperation has occurred, trust is updated by the

equation Tx(y)' = Tx(y)" + Δt(1 - Δt)ηtu where Tx(y)" is general trust prior to interaction.

www.manaraa.com

92

Δt = (Successesx(y) / Successesx(y) + Failuresx(y)) - Tx(y)". If there have been no

recorded successes or failures, Δt = Tx(y)". As the number of failures increases, Δt will

become negative, ultimately causing general trust to be reduced. Tx(y)' is then fixed at

1.0 if Tx(y)' > 1.0 and .001 if the Tx(y)' is < 0.0.

www.manaraa.com

93

5.2.2 EXPERIMENT 1 HYPOTHESES, RESULTS, and CONCLUSIONS

Experiment 1 Hypotheses:

• 1.1 - A system performing k-Nearest Neighbor (KMAS) will outperform a
system that does not perform k-Nearest Neighbor (NumK = 0), where
performance is measured by the system’s ability to only allow cooperation
between a requester agent and a partner that is non-deceptive.

• 1.2 - Over time, a system using trust-based agent recommendation will converge

towards a state where cooperation with deceptive agents will not occur.

Experiment 1 Description:

Experiment 1 compares K[0], K[6], and KE[6,10] to compare trials using k-Nearest
Neighbor, and one trial that does not. Relative convergence is set at 1000 life cycles.
The benchmark failure rate is set to 2.166. Experiment 1 is executed three times to
produce experiment groups A, B, and C.

Trial1 = K[0], Trial2 = K[6], Trial3 = KE[6,10]

To assist the reader, if needed, the recorded failures for each time step used to calculate
the failure rate are represented in graphical format in Appendix I.

www.manaraa.com

94

Table 1: Experiment 1 Inputs

Exp:1 MAS
Size

Time
Steps

Num
Alive

Num
K

Num
Deceptive

WA WS WBT WR ηtu ηl

Trial: 1 50 3000 25 0 25 1.0 .05 1.0 1.0 .10 0
Trial: 2 50 3000 25 6 25 1.0 .05 1.0 1.0 .10 0
Trial: 3 50 3000 25 6 25 1.0 .05 1.0 1.0 .10 10

Table 2: Experiment 1 ETIP Contents

Trial: 1
MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 0
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks:
 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10
LearningRate 0

Trial: 2
MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 6
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks:
 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10
LearningRate 0

Trial: 3
MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 6
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks:
 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10
LearningRate 10

www.manaraa.com

95

Table 3: Experiment 1 Group A Observations

 Trial1 Trial2 Trial3

Max Failure Rate 5.591398 4.7083335 4.866142

Time Step at Max 185 95 126

SlopeLR -0.001537675 -0.00100691 -0.0010049

Elapsed Time (End – Max) 2814 2904 2873

Input TimeBB 1152 501 526

FailureBB 2.165655 2.1653388 2.166983

Avg_VelocityB -0.00354265 -0.00626353 -0.0067479

Elapsed TimeB (Input – Max) B 967 406 400

Input TimeR 1000 1000 1000

FailureR 2.4885116 1.1068931 1.1658342

Avg_VelocityR -0.003807223 -0.00397949 -0.0042338

Elapsed TimeR (Input – Max) 815 905 874

Figure 1: Experiment 1 Group A Failure Rate
Experiment 1 Group A Failure Rate

0

1

2

3

4

5

6

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031 2176 2321 2466 2611 2756 2901

Time (offset + 1)

Fa
ilu

re
 R

at
e

FAILURE RATE1
FAILURE RATE2
FAILURE RATE3

www.manaraa.com

96

Figure 2: Experiment 1 Group A Individual Failure Rate

Trial 1: Failure Rate 1

 Trial 2: Failure Rate 2

 Trial 3: Failure Rate 3

www.manaraa.com

97

Table 4: Experiment 1 Group B Observations

 Trial1 Trial2 Trial3

Max Failure Rate 5.6842103 5.1621623 5.4883723

Time Step at Max 132 73 85

SlopeLR -0.00158314 -0.00108929 -0.0012008

Elapsed Time (End – Max) 2867 2926 2914

Input TimeBB 1153 526 518

FailureBB 2.1663778 2.1650853 2.1657033

Avg_VelocityB -0.003445477 -0.00661606 -0.0076736

Elapsed TimeB (Input – Max) B 1021 453 433

Input TimeR 1000 1000 1000

FailureR 2.4955044 1.1578422 1.1418581

Avg_VelocityR -0.003673624 -0.00431965 -0.0047503

Elapsed TimeR (Input – Max) 868 927 915

Figure 3: Experiment 1 Group B Failure Rate
Experiment 1 Group B Failure Rate

0

1

2

3

4

5

6

7

8

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031 2176 2321 2466 2611 2756 2901

Time (offset + 1)

Fa
ilu

re
 R

at
e

FAILURE RATE1
FAILURE RATE2
FAILURE RATE3

www.manaraa.com

98

Figure 4: Experiment 1 Group B Individual Failure Rate

 Trial 1: Failure Rate 1

 Trial 2: Failure Rate 2

 Trial 3: Failure Rate 3

www.manaraa.com

99

Table 5: Experiment 1 Group C Observations

 Trial1 Trial2 Trial3

Max Failure Rate 5.594203 5.202247 5.611765

Time Step at Max 206 88 84

SlopeLR -0.001522762 -0.00118322 -0.0011142

Elapsed Time (End – Max) 2793 2911 2915

Input TimeBB 1151 541 536

FailureBB 2.1666667 2.1660516 2.1657355

Avg_VelocityB -0.003627023 -0.00670242 -0.007624

Elapsed TimeB (Input – Max) B 945 453 452

Input TimeR 1000 1000 1000

FailureR 2.4905095 1.2007992 1.1728271

Avg_VelocityR -0.003908934 -0.00438755 -0.004846

Elapsed TimeR (Input – Max) 794 912 916

Figure 5: Experiment 1 Group C Failure Rate
Experiment 1 Group C FAILURE RATE

0

1

2

3

4

5

6

7

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031 2176 2321 2466 2611 2756 2901

Time (offset +1)

Fa
ilu

re
 R

at
e

FAILURE RATE1
FAILURE RATE2
FAILURE RATE3

www.manaraa.com

100

Figure 6: Experiment 1 Group C Individual Failure Rate

 Trial 1: Failure Rate 1

 Trial 2: Failure Rate 2

 Trial 3: Failure Rate 3

www.manaraa.com

101

Experiment 1 Conclusions:

 Across all three trials, there is a stark contrast between K[0] (Trial 1) and the

two variances of k-Nearest Neighbor (Trials 2 and 3). The first differences are in the

charted curves representing failure rate over time as measured by life cycles (Figures 1

through 6). With respect to time, the max failure rate for all three trials peaks early.

Since all agents are initially unknown, and half of the agents have yet to become active

within the system, time is needed to not only introduce new agents (of which some

could be deceitful), but also to allow agents to develop an appropriate amount of

distrust through updated trust values after direct interaction in K[0], and propagated

recommendation-based reputation in K[6] (Trial 2) and KE[6,10] (Trial 3). Max failure

rates occur in earlier observed life cycles in the trials that use the k-Nearest Neighbor

approach. This was clearly observed across all three trials and groups with an average

distance of 89 life cycles between the max failure rates of K[0] and K[6], and 76 life

cycles between K[0] and KE[6,10]. The graphs representing individual failure rates

(Figures 2, 4, and 6) clearly show the earlier observed occurrences of max failure rate

by looking at the X-axis which represents the time step. If hypothesis 1.1 holds true, we

expect that the maximum failure rate will be achieved sooner for systems that use the k-

Nearest Neighbor algorithm. As the failure rate decreases, this indicates the presence of

fewer interactions that lead to cooperation between a requester agent and a deceptive

partner. These experiments support hypothesis 1.1.

www.manaraa.com

102

 In addition to curve peaks in the charted graphs, the curves are also

differentiated in terms of the slope that can be measured. The first slope measured is

the slope of the linear regression line through the curve representing each trial execution

(labeled as SlopeLR). The time period is between the first local or max failure rate

(which ever occurs first) and the last executed life cycle. For example, in Experiment 1

Group B Trail3/Failure Rate3, the graph in Figure 4 depicts a local max of 7. In the

column labeled Trail 3 in Table 4, the maximum failure rate has a value of 5.488. The

reason for this difference is the desire to measure SlopeLR starting from the highest

recorded failure rate to properly measure change. The difference between local and

max failure rate is described in the terms and definitions of Section 5.2. The slope of

the line represents the average velocity measured over time.

It is observed that velocity is higher for K[0] compared to the other trials. This

holds true in all three groups of Experiment 1. Part of the explanation is due to the max

failure rate which is generally highest for K[0] across all group trials. This is an

expected result as direct interaction is random with deceitful agents. Cooperation will

continue to occur until general trust is sufficiently lowered through trust update. There

is no ability to receive recommendations from other agents who have already identified

a deceitful agent as untrustworthy. At the end of the last executed life cycle, failure rate

receives the greatest displacement for K[0]. It is expected that for longer periods of

execution, failure rate will eventually converge to zero, and a trial with the highest peak

failure rate will always have the largest value for displacement or slope. Therefore, it is

www.manaraa.com

103

more important to view the average velocity in increasingly smaller life cycle periods

because this approaches instantaneous velocity and a more accurate measure of how

well the trials are performing. It is also important to note that linear regression attempts

to plot a straight line. While the graphs represented in this research are not linear, we

simply use linear regression to measure change.

 There are two other ways to observe the slope of the charted curves for the

experiment trials using smaller changes in time. First, slope can be measured from max

failure rate to a given failure rate across all three trials (Avg_VelocityB), or slope can be

measured from max failure rate to a given life cycle which is representative of relative

convergence (Avg_VelocityR). Smaller intervals of time will allow the slope to become

more valuable in terms of measuring performance. Instead of linear regression, the

slope will be calculated using a simple rise over run method (y2 – y1 / x2 – x1). Across

all groups, the slope measured from max failure rate to a relative convergence point of

1000 life cycles executed (Avg_VelocityR), provides values that collaborate expected

results if hypothesis 1.1 holds true. k-Nearest Neighbor approaches have the largest

slope values with KE[6,10] dominating all three trials for both types of slope

measurements. In the case of group A (Table 3 and Figures 1 & 2), even though

KE[6,10] does not have a lower failure rate at relative convergence (FailureR) than

K[6], it does have a higher slope indicating a more rapid drop towards convergence.

The max failure rate and associated time cycle are obviously factors in the slope

www.manaraa.com

104

calculation, but they are not the major determinants in the observed results. The

difference in elapsed time is only 31 life cycles.Using the elapsed time value of 905 life

cycles for the Trial 3 relative convergence slope calculation still yields a larger slope

than Trial 2 with 905 life cycles.

 The second slope observed, Avg_VelocityB, is the slope between max failure

rate and a chosen benchmark failure rate close to 2.166 for all experiment groups

(FailureB). K[6] and in particular KE[6,10] still show dominance. Using group A as a

reference again, the difference in elapsed life cycles is now only 6 life cycles between

K[6] and KE[6,10] in terms of the number of life cycles needed to reach a failure rate

close to 2.166 failures per life cycle. One observation is that the slope is higher for k-

Nearest Neighbor trials when using the benchmark as opposed to relative convergence.

K[0] records a higher slope when using relative convergence. The reason is that it takes

longer for K[0] to have an impact on failure rate because of the number of necessary

direct interactions. By the time the shared relative convergence point has been reached,

the k-Nearest Neighbor trials have curves that are already starting to “smooth out”. The

instantaneous velocity of the curves is decreasing as the failure rates converge towards

zero.

 We have taken a brief glance at elapsed time as it pertains to slope calculations

and the amount of life cycles needed to reach the max failure rate. Elapsed time can

also be looked at when viewing how much time is required to reach an arbitrary failure

www.manaraa.com

105

rate during each trial starting from the first time step. Using the 2.166 benchmark

failure rate again, we observe that on average, K[0] needs 1152 life cycles, K[6]

requires 522 life cycles, and KE[6,10] utilizes 526 life cycles to reach this point. Again,

k-Nearest Neighbor trials clearly dominate and support hypothesis 1.1 as true. Despite

a larger average for KE[6,10] when compared to K[6], we showed that the slope proves

a faster convergence. This difference can be explained by the random nature of agent

interaction in early life cycles. In groups A and B, K[6,10] reached a max failure rate at

later life cycles than K[6], thus requiring more time to converge towards 2.166. This

highlights the fact that recommendation-based reputation is still dependent upon direct

interaction until reputation of deceitful agents has been determined by a sufficient

number of nearest neighbors, and the reputation propagated by those neighbors is

sufficient enough to allow the requester agent to identify the deceitful agents as

untrustworthy.

 In summary, hypothesis 1.1 is supported by observed experiment results. Trials

using k-Nearest Neighbor outperform trials that do not use k-Nearest Neighbor in terms

of how fast the system reaches desirable states of execution where cooperation resulting

in failures is decreasing as the system converges towards a state of zero occurrences of

failures. This is justified by observing that for trials utilizing some form of the k-

Nearest Neighbor algorithm, max failure rates occur in earlier life cycles, slope

measurements between max failure rates and chosen time periods show larger rates of

convergence as slope increases, and the benchmark failure rate of 2.166 is reached

www.manaraa.com

106

sooner. Hypothesis 1.2 is supported by observing Appendix I and the graphs

representing number of failures over time. These graphs represent the outputted failure

logs for Experiment 1 groups and associated trials. Three of the graphs are shown on

the next page, and represent the number of failures recorded at each time step for

Experiment 1, Group A. Looking at the recorded failures past the relative convergence

point of 1000 life cycles, the number of recorded failures eventually reaches the desired

value of zero occurrences during any executed life cycle. This holds true for both trust-

based recommendation, and pure direct interaction. In fact, for both trials using

recommendation-based reputation (represented by graphs T2/trial 2 and T3/trial 3), no

failures are recorded past the convergence point of 1000 life cycles. Direct interaction,

shown in graph Failures T1, records only a few occurrences.

www.manaraa.com

107

Figure 7: Experiment 1 Group A Failures by Time Step
FAILURES T1

0

2

4

6

8

10

12

14

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T1

FAILURES T2

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T2

FAILURES T3

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T3

www.manaraa.com

108

5.2.3 EXPERIMENT 2 HYPOTHESES, RESULTS, and CONCLUSIONS

Experiment 2 Hypotheses:

• 2.1 - The number of executed life cycles needed to reach maximum failure rate
will decrease as the number of nearest neighbors increases, despite randomness
in both interaction relationship pairings and when new agents are made active in
the system

• 2.2 - Curve slope, as a measure of average velocity and calculated by (y2 – y1 /

x2 – x1) where y’s represent the range of failure rates and x’s represent the range
of time steps, will increase as the number of neighbors increases.

• 2.3 - As the number of neighbors increases, elapsed time in life cycles between

the maximum failure rate and the benchmark failure rate (Elapsed TimeB) will
decrease.

Experiment 2 Description:

Experiment 2 compares K[4], K[8], and K[12] to compare trials using three different
values for the number of nearest neighbors. Relative convergence is set at 800 life
cycles. The benchmark failure rate is set to 2.166. Hypotheses 2.1 and 2.3 use the term
maximum failure rate as defined in Section 5.2.1 as the maximum observed failure rate
among trial time steps after initial, local max failure rates have been achieved.
Experiment 2 is executed three times to produce experiment groups A, B, and C.

Trial1 = K[4], Trial2 = K[8], Trial3 = K[12]

To assist the reader, if needed, the recorded failures for each time step used to calculate
the failure rate are represented in graphical format in Appendix J.

www.manaraa.com

109

Table 6: Experiment 2 Inputs

Exp:2 MAS
Size

Time
Steps

Num
Alive

Num
K

Num
Deceptive

WA WS WBT WR ηtu ηl

Trial: 1 50 3000 25 4 25 1.0 .05 1.0 1.0 .10 0
Trial: 2 50 3000 25 8 25 1.0 .05 1.0 1.0 .10 0
Trial: 3 50 3000 25 12 25 1.0 .05 1.0 1.0 .10 0

Table 7: Experiment 2 ETIP Contents

Trial: 1
MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 4
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks:
 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10

LearningRate 0

Trial: 2
MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 8
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks:
 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10
LearningRate 0

Trial: 3
MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 12
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks:
 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10
LearningRate 0

www.manaraa.com

110

Table 8: Experiment 2 Group A Observations

 Trial1 Trial2 Trial3

Max Failure Rate 5.322034 4.6625 4.5584416

Time Step at Max 117 79 76

SlopeLR -0.001153685 -0.00101265 -0.0009458

Elapsed Time (End – Max) 2882 2920 2923

Input TimeBB 633 486 368

FailureBB 2.1671925 2.1663244 2.1653116

Avg_VelocityB -0.006114034 -0.00613311 -0.0081957

Elapsed TimeB (Input – Max) B 516 407 292

Input TimeR 800 800 800

FailureR 1.7265917 1.3420724 1.0299625

Avg_VelocityR -0.005264191 -0.00460531 -0.0048736

Elapsed TimeR (Input – Max) 683 721 724

Figure 8: Experiment 2 Group A Failure Rate
Experiment 2 Group A Failure Rate

0

1

2

3

4

5

6

7

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031 2176 2321 2466 2611 2756 2901

Time (offset + 1)

Fa
ilu

re
 R

at
e

FAILURE RATE1
FAILURE RATE2
FAILURE RATE3

www.manaraa.com

111

Figure 9: Experiment 2 Group A Individual Failure Rate

 Trial 1: Failure Rate 1

 Trial 2: Failure Rate 2

 Trial 3: Failure Rate 3

www.manaraa.com

112

Table 9: Experiment 2 Group B Observations

 Trial1 Trial2 Trial3

Max Failure Rate 5.9594593 4.6213593 4.8030305

Time Step at Max 73 102 65

SlopeLR -0.001256279 -0.00103427 -0.0008718

Elapsed Time (End – Max) 2926 2897 2934

Input TimeBB 635 446 366

FailureBB 2.1650944 2.165548 2.1662126

Avg_VelocityB -0.006751539 -0.00713899 -0.0087602

Elapsed TimeB (Input – Max) B 562 344 301

Input TimeR 800 800 800

FailureR 1.7365793 1.2509364 1.0362047

Avg_VelocityR -0.005808638 -0.00482869 -0.0051249

Elapsed TimeR (Input – Max) 727 698 735

Figure 10: Experiment 2 Group B Failure Rate
Experiment 2 Group B Failure Rate

0

1

2

3

4

5

6

7

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031 2176 2321 2466 2611 2756 2901

Time (offset + 1)

Fa
ilu

re
 R

at
e

FAILURE RATE1
FAILURE RATE2
FAILURE RATE3

www.manaraa.com

113

Figure 11: Experiment 2 Group B Individual Failure Rate

 Trial 1: Failure Rate 1

 Trial 2: Failure Rate 2

 Trial 3: Failure Rate 3

www.manaraa.com

114

Table 10: Experiment 2 Group C Observations

 Trial1 Trial2 Trial3

Max Failure Rate 4.781022 4.815534 4.5921054

Time Step at Max 136 102 75

SlopeLR -0.001077035 -0.00100676 -0.0008279

Elapsed Time (End – Max) 2863 2897 2924

Input TimeBB 611 507 359

FailureBB 2.1650326 2.1653543 2.1666667

Avg_VelocityB -0.005507346 -0.00654365 -0.0085403

Elapsed TimeB (Input – Max) B 475 405 284

Input TimeR 800 800 800

FailureR 1.6803995 1.3932585 1.0274657

Avg_VelocityR -0.004669612 -0.00490297 -0.0049167

Elapsed TimeR (Input – Max) 664 698 725

Figure 12: Experiment 2 Group C Failure Rate
Experiment 2 Group C Failure Rate

0

1

2

3

4

5

6

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031 2176 2321 2466 2611 2756 2901

Time (offset + 1)

Fa
ilu

re
 R

at
e

FAILURE RATE1
FAILURE RATE2
FAILURE RATE3

www.manaraa.com

115

Figure 13: Experiment 2 Group C Individual Failure Rate

 Trial 1: Failure Rate 1

 Trial 2: Failure Rate 2

 Trial 3: Failure Rate 3

www.manaraa.com

116

Experiment 2 Description:

 In all three groups with the exception of group B Trial 2, hypothesis 2.1

(asserting that the number of life cycles needed to reach maximum failure rate decreases

as the number of nearest neighbors increases)is supported. In group B (Table 9 and

Figures 10-11) , K[4] reaches max failure rate in 73 life cycles, K[8] reaches it in 102

life cycles, and K[12] reaches max failure rate at 65 life cycles. The reason for this

anomaly is that K[8] (Trial 2) reaches a local max at time t0 as indicated by Figure 11.

Also, at this time, the system is engaged in total direct interaction because all agents are

initially unknown to each other.

 Across all three groups, hypothesis 2.2 (asserting that the slope will increase as

the number of neighbors increases) is supported if slope is taken as the average velocity

of the curve between max failure rate and the benchmark failure rate of 2.166 (labeled

Avg_VelocityB in Tables 12, 13, and 14). In all three groups, there is a drastic

difference in elapsed time between K[4] and K[12] as it relates to the benchmark. Here,

elapsed time is measured from the time max failure rate is reached, to the time step that

the benchmark failure rate is reached (Elapsed TimeB (Input – Max)). The average

difference is in the order of 255 life cycles for Experiment 2 as a whole indicating a

very large comparative average velocity for K[12] (Trial 3 for all groups). When

measuring slope Avg_VelocityR for relative convergence, the hypothesis 2.2 only holds

true for group C. What this means is that K[4] has the highest rate of change between

max failure rate and relative convergence for two out of three trials.

www.manaraa.com

117

It is also important to note that K[8] and K[12] have very similar slope values that differ

only by -1.93 x 104 as an Experiment 2 average. This indicates the presence of

diminishing returns as the number of nearest neighbors increases. The greatest amount

of change takes place early on as indicated by our benchmark failure rate of 2.166 and

the slope between it and the max failure rate. Past some arbitrary point, instantaneous

velocity, or slope, starts decreasing as the curve smoothes towards convergence.

 Among all three groups, hypothesis 2.3 (asserting that as the number of

neighbors increases, elapsed time in life cycles between the maximum failure rate and

the benchmark failure rate will decrease) is supported with K[12] reaching the

benchmark failure rate in the smallest elapsed time when measured from maximum

failure rate. On average, K[4] achieves the benchmark in 517 life cycles, K[8] in 385

life cycles, and K[12] in 292 life cycles. It was also discovered that as the number of

nearest neighbors increases, the elapsed time between max failure rate and relative

convergence increases. Since relative convergence is fixed, the earliest max failure rate

will yield the greatest elapsed time. This system characteristic is straight forwardly

derived from the argument supporting hypothesis 2.1 so that as the number of nearest

neighbors increases, max failure rate is achieved sooner causing the greater observed

elapsed time.

www.manaraa.com

118

 In summary, hypotheses 2.1 and 2.3 are supported by experiment results

suggesting that as the number of nearest neighbors increases, maximum failure rate is

achieved sooner, and elapsed time between max failure rate and the benchmark

decreases. Hypothesis 2.3 is further supported by the argument supporting hypothesis

2.2, and showing that slope increases between max failure rate and the benchmark

failure rate as the number of neighbors increases. It was also found that this time period

exhibits a rate of higher returns when the number of nearest neighbors is increased, and

that past some arbitrary point in time, gains in terms of system performance will

diminish. It might be possible that a KMAS system of certain size (maximum number

of agents), can be defined with a minimal number of allowable nearest neighbors to

achieve maximal performance.

www.manaraa.com

119

5.2.4 EXPERIMENT 3 HYPOTHESES, RESULTS, and CONCLUSIONS

Experiment 3 Hypotheses:

• 3.1 - The number of executed life cycles needed to reach maximum failure rate
will decrease as the learning rate decreases, allowing more exploration prior to
relative convergence.

• 3.2 - Curve slope, as a measure of average velocity and calculated by (y2 – y1 /

x2 – x1) where y’s represent the range of failure rates and x’s represent the range
of time steps, will increase as learning rate decreases (exploration increases),
indicating a greater return. This result is expected for both time periods between
max failure rate and relative convergence (Elapsed TimeR), as well as the period
between max failure rate and the benchmark failure rate (Elapsed TimeB).

• 3.3 - Elapsed time between the maximum failure rate and the benchmark failure

rate (Elapsed TimeB) will decrease as the learning rate decreases.

Experiment 3 Description:

Experiment 3 compares KE[4,10], KE[4,5], and KE[4,1] to compare trials using
different strategies of exploration. The number of nearest neighbors is fixed at four for
each trial. Relative convergence is varied by group and trial as indicated by Input
TimeR in the table of experiment results shown in section 5.2.3. The benchmark failure
rate is set to 2.166. Experiment 3 is executed three times to produce experiment groups
A, B, and C.

Trial1 = KE[4,10], Trial2 = KE[4,5], Trial3 = KE[4,1]

To assist the reader, if needed, the recorded failures for each time step used to calculate
the failure rate are represented in graphical format in Appendix K.

www.manaraa.com

120

Table 11: Experiment 3 Inputs

Exp:3 MAS
Size

Time
Steps

Num
Alive

Num
K

Num
Deceptive

WA WS WBT WR ηtu ηl

Trial: 1 50 3000 25 4 25 1.0 .05 1.0 1.0 .10 10
Trial: 2 50 3000 25 4 25 1.0 .05 1.0 1.0 .10 5
Trial: 3 50 3000 25 4 25 1.0 .05 1.0 1.0 .10 1

Table 12: Experiment 3 ETIP Contents

Trial: 1
MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 4
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks:
 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10

LearningRate 10

Trial: 2
MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 4
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks:
 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10
LearningRate 5

Trial: 3
MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 4
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks:
 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10
LearningRate 1

www.manaraa.com

121

Table 13: Experiment 3 Group A Observations

 Trial1 Trial2 Trial3

Max Failure Rate 5.5753427 5.3301888 5.2727275

Time Step at Max 72 105 87

SlopeLR -0.00122704 -0.00115629 -0.0009671

Elapsed Time (End – Max) 2927 2894 2912

Input TimeBB 614 601 418

FailureBB 2.1658537 2.1677742 2.1646779

Avg_VelocityB -0.00629057 -0.00637584 -0.0093899

Elapsed TimeB (Input – Max) B 542 496 331

Input TimeR 800 700 400

FailureR 1.6828964 1.8744651 2.2618454

Avg_VelocityR -0.005346767 -0.00580794 -0.0096194

Elapsed TimeR (Input – Max) 728 595 313

Figure 14: Experiment 3 Group A Failure Rate
Experiment 3 Group A Failure Rate

0

1

2

3

4

5

6

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031 2176 2321 2466 2611 2756 2901

Time (offset + 1)

Fa
ilu

re
 R

at
e

FAILURE RATE1
FAILURE RATE2
FAILURE RATE3

www.manaraa.com

122

Figure 15: Experiment 3 Group A Individual Failure Rate

 Trial 1: Failure Rate 1

 Trial 2: Failure Rate 2

 Trial 3: Failure Rate 3

www.manaraa.com

123

Table 14: Experiment 3 Group B Observations

 Trial1 Trial2 Trial3

Max Failure Rate 5.19 5.141593 4.6875

Time Step at Max 99 112 79

SlopeLR -0.001143028 -0.00110183 -0.0009231

Elapsed Time (End – Max) 2900 2887 2920

Input TimeBB 597 578 401

FailureBB 2.165552 2.1658032 2.164179

Avg_VelocityB -0.006073189 -0.00638582 -0.0078364

Elapsed TimeB (Input – Max) B 498 466 322

Input TimeR 800 700 500

FailureR 1.6229713 1.7960057 1.742515

Avg_VelocityR -0.005088486 -0.00568977 -0.0069952

Elapsed TimeR (Input – Max) 701 588 421

Figure 16: Experiment 3 Group B Failure Rate
Experiment 3 Group B Failure Rate

0

1

2

3

4

5

6

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031 2176 2321 2466 2611 2756 2901

Time (offset + 1)

Fa
ilu

re
 R

at
e

FAILURE RATE1
FAILURE RATE2
FAILURE RATE3

www.manaraa.com

124

Figure 17: Experiment 3 Group B Individual Failure Rate

 Trial 1: Failure Rate 1

 Trial 2: Failure Rate 2

 Trial 3: Failure Rate 3

www.manaraa.com

125

Table 15: Experiment 3 Group C Observations

 Trial1 Trial2 Trial3

Max Failure Rate 5.3153152 5.506024 5.0588236

Time Step at Max 110 82 101

SlopeLR -0.001104168 -0.00119997 -0.0009184

Elapsed Time (End – Max) 2889 2917 2898

Input TimeBB 568 607 411

FailureBB 2.1652021 2.1677632 2.1674757

Avg_VelocityB -0.006877976 -0.00635859 -0.0093269

Elapsed TimeB (Input – Max) B 458 525 310

Input TimeR 800 800 500

FailureR 1.548065 1.6579276 1.7864271

Avg_VelocityR -0.005459783 -0.00535947 -0.0082015

Elapsed TimeR (Input – Max) 690 718 399

Figure 18: Experiment 3 Group C Failure Rate
Experiment 3 Group C Failure Rate

0

1

2

3

4

5

6

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031 2176 2321 2466 2611 2756 2901

Time (offset + 1)

Fa
ilu

re
 R

at
e

FAILURE RATE1
FAILURE RATE2
FAILURE RATE3

www.manaraa.com

126

Figure 19: Experiment 3 Group C Failure Rate

 Trial 1: Failure Rate 1

 Trial 2: Failure Rate 2

 Trial 3: Failure Rate 3

www.manaraa.com

127

Experiment 3 Conclusions:

 Hypothesis 3.1 is not supported by experiment results. Across the three groups,

different trials have the lowest elapsed time needed to reach max failure rate as

indicated by the rows labeled “Time Step at Max” in Tables 16, 17, and 18. This

indicates that varying the learning rate does not add to performance as was expected in

this aspect of the system. This can also be seen by looking at results from Experiment 1

in Tables 8, 9, and 10. K[6] and KE[6,10] of Experiment 1 (Trials 2 and 3) only differ

in that KE[6,10] employs a learning rate. Only in group C of Experiment 1, does

K[6,10] reach the max failure rate in less time than K[6]. Across all Experiment 1

groups, KE[6,10] does outperform K[0] (Trial 1). However, this is expected, and

hypothesis 3.1 seeks to justify the advantage of using more exploration. Experiment 2

provides better results because using more neighbors can provide reputation

recommendations early on. Decreasing the learning rate and allowing more exploration

does not benefit the system if enough interactions have not occurred to build reputations

that label agents as untrustworthy.

 In contrast to the other experiments, the relative convergence point has been

varied to focus only on periods of increasing returns. In experiments 1 and 2, relative

convergence was fixed at 1000 life cycles for all groups and trials. In experiment 3, the

chosen point of relative convergence is changed for each specific trial within an

experiment group and is represented by the row labeled “Input TimeR” in Tables 16, 17,

and 18. Between the period of max failure rate and relative convergence,

www.manaraa.com

128

K[4,1] (Trial 3) performing exploration at every time step of life cycle execution

outperforms the other trials across all groups to support hypothesis 3.2. This

performance is measured by Avg_VelocityR. K[4,5] (Trial 2) outperforms K[4,10] (Tial

1) in two out of three groups. In group C, the slopes for K[4,10] and K[4,5] are

relatively equivalent. K[4,1] further supports hypothesis 3.2 during the period between

max failure rate and the benchmark failure rate by outperforming all other trails across

all three groups as measured by Avg_VelocityB. Again, group C (Table 15 and Figures

18 -19) provides the only exception with K[4,10] outperforming K[4,5]. Since slope is

partially determined by the change in failure rate over elapsed time, the higher slope for

K[4,10] can be explained by the larger elapsed time for K[4,5] in both slope

measurements. In both cases, K[4,5] does have the highest change in failure

rate(change in y) between max failure and benchmark (Avg_VelocityB), as well as

between max failure and relative convergence (Avg_VelocityR). The results show the

continued dependency on direct interaction to build the pool of neighbor

recommendations that will provide a low enough trust value to negate cooperation with

untrustworthy partners. This could indicate that during earlier life cycles where K[4,5]

reached its peak failure rate sooner, exploration allowed it to identify more deceptive

agents than K[4,10], but it took longer to identify all untrustworthy agents thereby

allowing failures to continue.

www.manaraa.com

129

 Finally, hypothesis 3.3 (asserting that that elapsed time between the max failure

rate and the benchmark failure rate will decrease as the learning rate decreases) is

supported. As indicated in the observations supporting hypothesis 3.2, group C is the

only exception. On average, KE[4,10] achieves the benchmark in 499 life cycles,

KE[4,5] in 495 life cycles, and KE[4,1] in 321 life cycles.

 In conclusion, hypothesis 3.1 is not supported. The suggested explanation is

that exploration only aids performance when neighbors are known and a sufficient

number of interactions have taken place. Once this occurs, greater performance returns

are found as indicated by measuring the slope of the curve to estimate average velocity

towards the benchmark failure rate and convergence to support hypothesis 3.2.

Hypothesis 3.3 is supported.

 To summarize the results of the KMAS experiments, the goals of this research

are stated here. A goal of DAI research is to develop cooperation models to increase

task completion rates by avoiding harmful interactions between distributed components

in a DAI system. Here, in this research, the components are autonomous, intelligent,

adaptive, and rational agents that may seek self interested behavior, and in doing so,

may cause harmful interactions intentionally or otherwise. DAI systems are also used

to test theories about reasoning processes. In the KMAS experiment, the reasoning

process has been described as a process of determining the trustworthiness of potential

interaction partners to cooperate with. The goal of the KMAS research is to model a

www.manaraa.com

130

multi-agent system composed of agents with characteristics described above that will

reason about the trustworthiness of potential agent partners. In doing so, harmful

interactions will be minimized, and then eliminated as the system converges to a state

where only cooperation with non-deceitful partners exists as an emergent property of

the system. Another research goal is to determine the benefits of a recommendation-

based reputation model of trust using the k-Nearest Neighbor learning algorithm, and to

measure its performance.

 The documented experiment results show that a MAS system using trust can

converge to a state where potentially harmful interactions are reduced, then eliminated.

This is an emergent property of the KMAS system because although each agent has a

model of trust that does not allow cooperation with any deceitful partner after all agents

have entered the system, each agent alone cannot define a system state, only its local

state within the environment. This is critical, and more discussion of this will be

presented in Section 5.3. Furthermore, it is not guaranteed that all deceitful agents will

be known to every other agent. However, the reputations of these agents may be

available if requested. It was also demonstrated that the recommendation-based model

of trust can outperform a system using only direct interaction and the absence of the

nearest neighbor algorithm. This support was further bolstered by results that showed a

bounded increase in performance when the number of agents providing the

recommendations was increased. Performance was also enhanced by increasing the

number of times recommendations were requested or provided.

www.manaraa.com

131

SECTION 5.3: FUTURE RESEARCH

 In all but one of the stated hypotheses (hypothesis 3.1 asserting that the number

of life cycles needed to reach max failure rate will decrease with more exploration),

experiment results fully or strongly supported hypothesis claims. Hypotheses 2.1 and

2.2 were strongly supported despite the presense of explainable experiment results in

some of the trial groups which were contrary to the hypotheses. What is being

attempted is a “support by example” of each hypothesis to show that the hypotheses can

be supported in the context of the KMAS experiments that have been recorded and

presented. However, the trial groups show that in some cases, the KMAS experiment

can provide examples of an exception. Stronger support or proof techniques may be

needed in future research combined with modified hypotheses.

 The agents in KMAS use a tuple of weighted agent characteristics as input to the

k-Nearest Neighbor algorithm. The Euclidean distance finds other agents with similar

characteristics. The reasoning behind this is that similar agents may recommend the

most appropriate values of reputation for the unknown trading partner. The chosen

characteristics were age, number of successful tasks, basic trust, and basic risk. In

theory, this would be useful in situations in which agent characteristics have a bearing

on the cooperative task and its results. For instance, if chosen interaction partners

defect during cooperation because of the age of the requester (seen as inexperienced),

www.manaraa.com

132

agents of the same age may accurately model the untrustworthiness of other agents who

are biased towards age.

Future research could identify the propensity of a system to display

neighborhood convergence as an emergent property where agents with similar

characteristics will only interact with agents that have certain characteristics themselves

or desirable traits. The system could function in a similar fashion to a genetic algorithm

where only the most “fit” agents are involved in cooperation.

 A second area of research could involve changing the tuple representing an

agent so that it reflects the characteristics of the unknown agent and the cooperative task

that will be undertaken. A requester agent would then solicit recommendations from

others that match in Euclidean distance to the tuple. This is more in line with the

standard implementation of the k-Nearest Neighbor algorithm. In this way, agent

classifications will be trusted or distrusted. If an agent is not trustworthy according to a

certain task and the recommendations of others, it will not be cooperated with. The

emergent property of such a system could be that it only allows cooperation with agents

that are “right for the job”. In this way, trust can be dependent on the situation (task)

and the competence of the agent that is being requested as an interaction partner.

 A third area for future research might investigate trust “direction”. In KMAS,

trust is only applied in one direction, from the viewpoint of the requester. If an

www.manaraa.com

133

interaction partner defects from the cooperative agreement, trust is decreased as a

negative reward. The requester may decide not to cooperate, but this is not viewed as a

defection because the cooperative agreement is not “sealed” until the requester agrees to

cooperate. The system could be modified such that the decision of the requester is

viewed as a defection in the eyes of the potential partner, prompting the partner to

perform trust update. Time is a valuable resource and the interaction partner suffers a

loss in resources for both time and the benefits of cooperating with a more agreeable

requester. This is similar to the research presented by [Nooteboom et al., 2001] in their

ACE model that allows for the coordination of scarce resources based on trust between

suppliers and consumers. The modified system could then converge to a state where

cooperative partnerships are only allowed between two willing parties. This would be

highly desirable in systems where speed is a measurable benchmark for performance,

and agents should decide whether or not to cooperate in the fastest amount of time.

Nearest neighbors must then be chosen where neighbors recommend the trustworthiness

of another agent based on interaction role. An interaction partner may defect as the

requester more than they are willing to defect as a partner of a requester agent. This

would exhibit rational behavior where requesters are more discriminating and have

more to gain or lose based on the type of cooperative tasks. If a cooperative task only

benefits a requester, such as in the case of information solicitation, they may have a

high rate of defection if the information is mission critical. The risk is far less if they

simply fulfill the requirement of that task by providing the information. An obvious

www.manaraa.com

134

exception would be systems where information is generally secured and protected. The

trustworthiness of the requester would then be extremely important.

 In addition to changing how recommendation-based reputation is modeled, the

time and place of reputation building within the system can be modeled in a different

manner. As indicated in Section 3.4.5, and as shown through the KMAS experiment

results, reputation computed through direct interaction is necessary for agents that are

new to the system. It is also necessary as agents build reputation through practical

experience that will provide an accurate recommendation-based value of

trustworthiness. In a different model of KMAS, agents could be isolated from the main

execution space, and placed in a test execution space where interactions and cooperative

tasks could be used to build reputation values prior to allowing the agent to enter into

the executing environment. This is similar to traditional machine learning approaches

that allow the learner to “train” on a set of “training data” or examples that will allow

the machine learning algorithm to approximate a target function [Mitchell, 1997]. In

KMAS, the target function would represent reputation, and the set of training data

would be cooperative tasks.

 In order to support research goals, the KMAS experiments were constructed to

allow agents to discount trust in untrustworthy agents, and to limit harmful interactions.

Future research could allow an agent with a reputation for untrustworthiness to redeem

www.manaraa.com

135

itself in the eyes of other agents. The computational model for trust update inherently

allows for trust to be increased if trust has not fallen below an agent’s risk threshold

(defined as basic risk in Section 5.2.1). If trust is below basic risk after the present

cooperative interaction has taken place, or if nearest neighbors provide an unacceptable

reputation recommendation, future interactions with the untrustworthy agent will not

occur. If agents are allowed to learn trustworthy behavior, and in doing so are

“reformed”, KMAS could be modified to allow these “reformed” agents to once again

interact within the system.

 A final area of proposed future research involves identifying areas where it is

advantageous to view a MAS adaptive system as a single entity, or agent, using

machine learning techniques. KMAS performed the (k Χ n) Nearest Neighbor

algorithm as an emergent property of the system because each agent locally performed

the nearest neighbor algorithm to classify other agents. Each agent is only aware of its

local state, or its representation of other agents as trustworthy or untrustworthy. Local

trust representations may not accurately depict the trustworthiness of an agent. As a

sum of all component parts (agents), KMAS as a system environment is aware of the

trustworthiness of all agents and determines this by performing the nearest neighbor

algorithm globally. It can be viewed as having an i-dimensional search space where

each agent resides as a point based on i characteristics. At the end of performing (k Χ

n) Nearest Neighbor, n agents have trust values that are updated and are available for

propagation throughout the system. If KMAS were modified to allow trust

www.manaraa.com

136

recommendations based on agent characteristics as opposed to actual agents, this

implementation of KMAS would provide a stronger example of emergence. In the

existing research, unknown agents can only be classified as untrustworthy when enough

direct interaction experiences have occurred to build a valuable and accurate pool of

recommendations. Using a black box view of the system, a new agent can be

introduced into the system, and KMAS would correctly classify it as trustworthy or

untrustworthy based on that agent being involved in the interaction process. The agents

involved in the classification have no idea that the agent is unknown to the system

unless system age is a characteristic in the classification tuple. It is a realistic

assumption that an implementation of KMAS in a commercial setting may not have

system age as an identifiable characteristic, especially in open system models or

environments with highly heterogeneous agent architectures. What important

contributions might be made to the areas of agency, DAI, adaptive systems, and

machine learning by taking the black box approach to agent system design, testing, and

implementation?

www.manaraa.com

List of References

137

www.manaraa.com

138

List of References

[Ashri et al., 2000] R. Ashri, I. Rahwan, and M. Luck. Architectures for Negotiating
Agents. In V. Marik, J. Muller, and M. Pechoucek, editors, Multi-Agents Systems and
Applications III (LNAI Volume 2691), pages 136-146. Springer-Verlag: Berlin,
Heidelberg, New York, 2000.

[Bach, 2004] D.Bach. The Automatic Millionaire. Broadway Books: New York, 2004.

[Barber and Kim, 2001] K. S. Barber and J. Kim. Belief Revision Process Based on
Trust: Agents Evaluating Reputation of Information Sources. In R. Falcone, M. Singh,
and Y. H. Tan, editors, Trust in Cyber-societies (LNAI Volume 2246), pages 73-82.
Springer-Verlag: Berlin, Heidelberg, New York, 2001.

[Barber et al., 2000] K. S. Barber, D. C. Han, and T. H. Liu. Coordinating Decision
Making Using Reusable Interaction Specifications. In C. Zhang and V. Soo, editors,
Design and Applications of Intelligent Agents (LNAI Volume 1881), pages 1-15.
Springer-Verlag: Berlin, Heidelberg, New York, 2000.

[Barber et al., 2003] K. S. Barber, K. Fullam, and J. Kim. Challenges for Trust, Fraud,
and Deception Research in Multi-Agent Systems. In R. Falcone, S. Barber, L. Korba,
and M. Singh, editors, Trust, Reputation, and Security: Theories and Practice (LNAI
Volume 2631), pages 8-14. Springer-Verlag: Berlin, Heidelberg, New York, 2003.

[Bazzan, 1997] A. Bazzan. Evolution of Coordination as a Metaphor for Learning in
Multi-Agent Systems. In G. Weiss, editor, Distributed Artificial Intelligence Meets
Machine Learning (LNAI Volume 1221), pages 117-136. Springer-Verlag: Berlin,
Heidelberg, New York, 1997.

[Birk, 2001] A. Birk. Learning to Trust. In R. Falcone, M. Singh, and Y. H. Tan,
editors, Trust in Cyber-societies (LNAI Volume 2246), pages 133-144. Springer-
Verlag: Berlin, Heidelberg, New York, 2001.

www.manaraa.com

139

[Clark et al., 1997] M. Clark, K. Irwag, and W. Wobcke. Emergent Properties of Teams
of Agents in the Tileworld. In L. Cavedon, A. Rao, and W. Wobcke, editors, Intelligent
Agent Systems (LNAI Volume 1209), pages 164-176. Springer-Verlag: Berlin,
Germany, 1997.

[D’Inverno and Luck, 2001, 2004] M. D’Inverno and M. Luck. Understanding Agent
Systems. Springer-Verlag: Berlin, Heidelberg, New York, 2004.

[Durfee et al., 1989] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Trends in
Cooperative Distributed Problem Solving. In IEEE Transactions on Knowledge Data
Engineering, 1(1):63-83, 1989.

[Falcone et al., 2001] R. Falcone, M. Singh, and Y. H. Tan. Introduction: Bringing
Together Humans and Artificial Agents in Cyber-societies: A New Field of Trust
Research. In R. Falcone, M. Singh, and Y. H. Tan, editors, Trust in Cyber-societies
(LNAI Volume 2246), pages 1-7. Springer-Verlag: Berlin, Heidelberg, New York,
2001.

[Gasser, 1992] L. Gasser. An Overview of DAI. In N. M. Avouris and L. Gasser,
editors, Distributed Artificial Intelligence: Theory and Praxis, pages 9 - 30. Kluwer
Academic Publishers: Dordrecht, Boston, London, 1992.

[Griffiths and Luck, 1999] N. Griffiths and M. Luck. Cooperative Plan Selection
Through Trust. In F. J. Garijo and M. Boman, editors, Multi-Agent Systems
Engineering (LNAI Volume 1647), pages 162-174. Springer-Verlag: Berlin,
Heidelberg, New York, 1999.

[Hermans, 1996] B. Hermans. Intelligent Software Agents on the Internet. 1996.
Available from http://www.hermans.org/agents.

[Jennings, 1996] N. R. Jennings. Coordination Techniques for Distributed Artificial
Intelligence. In G. M. P. O'Hare and N. R. Jennings, editors, Foundations of Distributed
Artificial Intelligence, pages 187-210. John Wiley & Sons, Inc: New York, Chichester,
Brisbane, Toronto, Singapore, 1996.

[Jonker and Treur, 1999] C. M. Jonker and J. Treur. Analysis of Models for the
Dynamics of Trust Based on Experiences. In F. J. Garijo and M. Boman, editors, Multi-
Agent Systems Engineering (LNAI Volume 1647), pages 221-231. Springer-Verlag:
Berlin, Heidelberg, New York, 1999.

http://www.hermans.org/agents
http://www.hermans.org/agents

www.manaraa.com

140

[Klusch et al., 2003] M. Klusch, S. Bergamaschi, and P. Petta. European Research and
Development of Intelligent Information Agents: The AgentLink Perspective. In M.
Klusch, S. Bergamaschi, P.Edwards, and P. Petta, editors, Intelligent Information
Agents: The AgentLink Perspective (LNAI Volume 2586), pages 1-21. Springer-
Verlag: Berlin, Heidelberg, New York, 2003.

[Langley, 1996] P. Langley. Elements of Machine Learning, Morgan Kaufmann
Publishers, Inc: San Francisco, California, 1996.

[Lenzmann and Wachsmuth, 1996] B. Lenzmann and I. Wachsmuth. A User-Adaptive
Interface Agency for Interaction with a Virtual Environment. In G. Weis and S. Sen,
editors, Adaptation and Learning in Multi-Agent Systems (LNAI Volume 1042), pages
140-151. Springer-Verlag: Berlin, Heidelberg, New York, 1996.

[Lenzmann and Wachsmuth, 1997] B. Lenzmann and I. Wachsmuth. Contract-Net-
Based Learning in a User-Adaptive Interface Agency. In G. Weiss, editor, Distributed
Artificial Intelligence Meets Machine Learning (LNAI Volume 1221), pages 202-222.
Springer-Verlag: Berlin, Heidelberg, New York, 1997.

[Malone, 1990] T. W. Malone. Organizing Information Processing Systems: Parallels
Between Human Organizations and Computer Systems. In W.W. Zachary, S. P.
Robertson, and J. B. Black, editors, Cognition, Computation, and Cooperation, pages
56-83. Ablex: Norward, New Jersey, 1990.

[Mandalapu and Adya, (n.d.)] S. Mandalapu and K. Adya. Search Engine Using Mobile
Agents and Peer to Peer Network. Southern Illinois University. (n.d.). Retrieved May 6,
2005, from http://www.cs.siu.edu/~smanda/paper.pdf.

[Marsh, 1994] S. Marsh. Trust in Distributed Artificial Intelligence. In C. Castelfranchi
and E. Werner, editors, Artificial Social Systems (LNAI Volume 830), pages 94-112.
Springer-Verlag: Berlin, Heidelberg, New York, 1994.

[Mass and Shehory, 2001] Y. Mass and O. Shehory. Distributed Trust in Open Multi-
Agent Systems. In R. Falcone, M. Singh, and Y. H. Tan, editors, Trust in Cyber-
societies (LNAI Volume 2246), pages 159-173. Springer-Verlag: Berlin, Heidelberg,
New York, 2001.

http://www.cs.siu.edu/%7Esmanda/paper.pdf
http://www.cs.siu.edu/%7Esmanda/paper.pdf
http://www.cs.siu.edu/%7Esmanda/paper.pdf

www.manaraa.com

141

[Mateas, 1997] M. Mateas. An Oz-Centric Review of Interactive Drama and Believable
Agents. Carnegie Mellon University. 1997. Available from
[McKnight and Chervany, 2001] D. McKnight and N. L. Chervany. Trust and Distrust
Definitions: One Bite at a Time. In R. Falcone, M. Singh, and Y. H. Tan, editors, Trust
in Cyber-societies (LNAI Volume 2246), pages 27-54. Springer-Verlag: Berlin,
Heidelberg, New York, 2001.

[Mitchell, 1997] T. M. Mitchell. Machine Learning. The MIT Press and the McGraw-
Hill Companies, Inc., 1997.

[Moulin and Chaib-Draa, 1996] B. Mouline and B. Chaib-Draa. An Overview of
Distributed Artificial Intelligence. In G. M. P. O'Hare and N. R. Jennings, editors,
Foundations of Distributed Artificial Intelligence, pages 1-55. John Wiley & Sons, Inc:
New York, Chichester, Brisbane, Toronto, Singapore, 1996.

[Mui et al., 2003] L. Mui, A. Halberstadt, and M. Mohtashemi. Evaluating Reputation
in Multi-Agent Systems. In R. Falcone, S. Barber, L. Korba, and M. Singh, editors,
Trust, Reputation, and Security: Theories and Practice (LNAI Volume 2631), pages
123-137. Springer-Verlag: Berlin, Heidelberg, New York, 2003.

[Murch and Johnson, 1999] R. Murch and J. Johnson. Intelligent Software Agents.
Prentice Hall PTR: Upper Saddle River, New Jersey, 1999.

[N. R. Jennings, 1999] N. R. Jennings. Agent-Oriented Software Engineering. In F. J.
Garijo and M. Boman, editors, Multi-Agent System Engineering (LNAI Volume 1647),
pages 1-7. Springer-Verlag: Berlin, Heidelberg, New York, 1999.

[Nooteboom et al., 2001] B. Nooteboom, T. Klos, and R. Jorna. Adaptive Trust and Co-
operation: An Agent-Based Simulation Approach. In R. Falcone, M. Singh, and Y. H.
Tan, editors, Trust in Cyber-societies (LNAI Volume 2246), pages 83-109. Springer-
Verlag: Berlin, Heidelberg, New York, 2001.

[Nunes and Oliveira, 2003] L. Nunes and E. Oliveira. Cooperative Learning Using
Advice Exchange. In E. Alonso, D. Kudenko, and D. Kazakov, editors, Adaptive
Agents and Multi-Agent Systems (LNAI Volume 2636), pages 33-48. Springer-Verlag:
Berlin, Heidelberg, New York, 2003.

[Ossowski, 1999] S. Ossowski. Coordination in Artificial Agent Societies: Social
Structure and Its Implications for Autonomous Problem-Solving Agents (LNAI Volume
1535). Springer-Verlag: Berlin, Heidelberg, New York, 1999.

www.manaraa.com

142

[Primeaux, 2000] D. Primeaux. "Trust Based Learning of Data Characteristics by an
Actual Entity," Proceedings of the ACIS 1st International Conference on Software
Engineering Applied to Networking and Parallel/Distributed Computing (SNPD '00),
Reims, France, May, 2000, pp. 239-244.

[Ramaniuk, 2000] S. G. Romaniuk. Using Intelligent Agents to Identify Missing and
Exploited Children. In IEEE Intelligent Systems, 15(2):27-30, 2000.

[Russell, 1999] S. Russell. Rationality and Intelligence. In M. Wooldridge and A. Rao,
editors, Foundations of Rational Agency, pages 11-33. Kluwer Academic Publishers:
Dordrecht, Boston, London, 1999.

[Schumacher, 2000] M. Schumacher. Objective Coordination in Multi-Agent System
Engineering (LNAI Volume 2039), Springer-Verlag: Berlin, Heidelberg, New York,
2001.

[Singh and Huhns, 1997] M. P. Singh and M. N. Huhns. Challenges for Machine
Learning in Cooperative Information Systems. In G. Weiss, editor, Distributed Artificial
Intelligence Meets Machine Learning (LNAI Volume 1221), pages 11-24. Springer-
Verlag: Berlin, Heidelberg, New York, 1997.

[Vidal, 2003] J. M. Vidal. Learning in Multiagent Systems: An Introduction from a
Game-Theoretic Perspective. In E. Alonso, D. Kudenko, and D. Kazakov, editors,
Adaptive Agents and Multi-Agent Systems (LNAI Volume 2636), pages 202-215.
Springer-Verlag: Berlin, Heidelberg, New York, 2003.

[Weiss, 1995] G. Weiss. Adaptation and Learning in Multi-Agent Systems: Some
Remarks and a Bibliography. In G. Weiss and S. Sen, editors, Adaptation and Learning
in Multi-Agent Systems (LNAI Volume 1042), pages 1-21. Springer-Verlag: Berlin,
Heidelberg, New York, 1996.

[Witkowski et al., 2001] M. Witkowski, A. Artikis, and J. Pitt. Experiments in Building
Experiential Trust in a Society of Objective-Trust Based Agents. In R. Falcone, M.
Singh, and Y. H. Tan, editors, Trust in Cyber-societies (LNAI Volume 2246), pages
111-132. Springer-Verlag: Berlin, Heidelberg, New York, 2001.

[Wooldridge and Rao, 1999] M. Wooldridge and A. Rao. Foundations of Rational
Agency. In M. Wooldridge and A. Rao, editors, Foundations of Rational Agency, pages
1-10. Kluwer Academic Publishers: Dordrecht, Boston, London, 1999.

[Wooldridge, 2000] M. Wooldrige. Reasoning about Rational Agents. The MIT Press:
Cambridge, MA, 2000.
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/oz/web/papers/CMU-CS-97-156.html.

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/oz/web/papers/CMU-CS-97-156.html

www.manaraa.com

143

Appendices

www.manaraa.com

144

APPENDIX A

fixedIn.txt

Example running program CreateFixedInputs and specifying 5 agents in the MAS with
2 agents being deceptive.

0.18818990734061736 0.8335305736671379
0.9590903038864445 0.08191107009997667
0.10470017444724145 0.8912400614943223
0.011554138422806393 0.5192266119404704
0.5631868953287027 0.7218656928570173
---------------begin deceptive input-----------------
0.03205061564866751 0.38324359015333176
0.8528369892992353 0.3073354210419863

www.manaraa.com

145

APPENDIX B

Experiment Trial Input

MAS_Size: 50
TimeSteps: 3000
NumAlive: 25
NumK: 0
NumDeceptive: 25
WeightAge: 1.0
WeightSuccessfulTasks: 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: .10
LearningRate 0
Debug: N
Outfile: c:\javatst\kmas\reports\e1trial1
FixedInput: Y
FixedInputFile: c:\javatst\kmas\docs\fixedIn.txt
FixedDeception: Y

www.manaraa.com

146

APPENDIX C

Failure Rate Log Example

..\docs\exp1\e1trial1.txt

OUTPUT: c:\javatst\kmas\reports\e1trial1failures.091305210940.txt

TIMESTEP,NUM ALIVE,NUM ALIVE DECEPTIVE,FAILURES,FAILURE RATE
0,25,14,2,2.0
1,25,14,2,2.0
2,25,14,3,2.3333333
3,26,14,4,2.75
4,27,15,2,2.6
5,28,15,5,3.0
6,28,15,4,3.142857
7,29,15,0,2.75
8,29,15,2,2.6666667
9,30,15,0,2.4
10,31,15,5,2.6363637
11,31,15,3,2.6666667
12,31,15,5,2.8461537
13,31,15,2,2.7857144
14,31,15,3,2.8
15,31,15,0,2.625
16,32,15,2,2.5882354
17,32,15,5,2.7222223
18,33,16,5,2.8421052
19,34,17,6,3.0
20,34,17,5,3.0952382
21,35,17,2,3.0454545
22,35,17,3,3.0434783
23,36,17,5,3.125
24,37,18,2,3.08
25,37,18,3,3.0769231
26,37,18,3,3.074074
27,38,19,8,3.25
28,38,19,5,3.310345
29,38,19,4,3.3333333
30,38,19,3,3.3225806

www.manaraa.com

147

31,39,20,7,3.4375
32,39,20,4,3.4545455
33,39,20,5,3.5
34,40,20,7,3.6
35,40,20,5,3.6388888
36,40,20,2,3.5945945
37,40,20,6,3.6578948

www.manaraa.com

148

APPENDIX D

Agent Cooperation Log Example

Example created using 5 agents, two of which are deceptive, and no fixed inputs. Initial
agent values are echoed.

1) Echoed initial parameters
--
KMAS INPUT PARAMETERS:

MAS_Size: 5
TimeSteps: 10
Initially Alive: 2
NumK: 3
NumDeceptive: 2
WeightAge: 1.0
WeightSuccessfulTasks: 0.5
WeightBasicTrust: 1.0
WeightRisk: 1.0
TrustUpdateRate: 0.1
LearningRate: 0
Debug: true
Outfile Prefix: c:\javatst\kmas\reports\example
Fixed Input Flag: false
Fixed Input File: c:\javatst\kmas\docs\fixedIn_example.txt
Fixed Deception Flag: false
--
BEGINNING AGENT VALUES:

Agent ID: 0
Alive: true
Partner: -1
Deceptive: 0
Basic Trust: 0.4507852644096837
Risk: 0.8759343386302918

Agent ID: 1
Alive: true
Partner: -1
Deceptive: 1
Deception Level: 0.11101908277973327 Deception Threshold: 0.0
Basic Trust: 0.34609323969918715
Risk: 0.8945244545584091

www.manaraa.com

149

Agent ID: 2
Alive: false
Partner: -1
Deceptive: 0
Basic Trust: 0.7975653290553835
Risk: 0.3347057059623324

Agent ID: 3
Alive: false
Partner: -1
Deceptive: 0
Basic Trust: 0.3926212493801474
Risk: 0.16903337755600345

Agent ID: 4
Alive: false
Partner: -1
Deceptive: 1
Deception Level: 0.9144526621377972 Deception Threshold: 0.0
Basic Trust: 0.5267962513070971
Risk: 0.40443529033625214

--

2) Agent #2 cooperation log

Agent #2 performs k-Nearest Neighbor at Time Step 4 for unknown Agent #4. Agent
#4 defects and trust is discounted. Agent #2 cooperates with Agent #4 again in Time
Step 7, and Agent #4 again defects because it is flagged as deceptive. Trust is again
updated and decreased. It will only take one more defection to cause situational trust to
be below risk. When this occurs, Agent #2 will no longer cooperate with Agent #4
because it is now seen as untrustworthy.

Time Step: 3 Agent Age: 2
Alive: true
Agent ID: 2 Requester Agent: true
Total Successes: 1 Total Failures: 0
Has Partner: true
Partner ID: 1
Nearest Neighbors: 4 0 1
Basic Trust: 0.7975653290553835
Old General Trust In Partner: 0.5
New General Trust In Partner: 0.525
Situational Trust: 0.39878266452769173 Risk: 0.3347057059623324
Will Cooperate: true
Success: true
Num Success with Partner: 1 Num Failure: 0
**

www.manaraa.com

150

Time Step: 4 Agent Age: 3
Alive: true
Agent ID: 2 Requester Agent: true
Total Successes: 1 Total Failures: 1
Has Partner: true
Partner ID: 4
Nearest Neighbors: 4 0 1
Basic Trust: 0.7975653290553835
Old General Trust In Partner: 0.5
New General Trust In Partner: 0.425
Situational Trust: 0.39878266452769173 Risk: 0.3347057059623324
Will Cooperate: true
Success: false
Num Success with Partner: 0 Num Failure: 1
**
Time Step: 6 Agent Age: 5
Alive: true
Agent ID: 2 Requester Agent: true
Total Successes: 2 Total Failures: 1
Has Partner: true
Partner ID: 3
Nearest Neighbors: 4 0 1
Basic Trust: 0.7975653290553835
Old General Trust In Partner: 0.5
New General Trust In Partner: 0.525
Situational Trust: 0.39878266452769173 Risk: 0.3347057059623324
Will Cooperate: true
Success: true
Num Success with Partner: 1 Num Failure: 0
**
Time Step: 7 Agent Age: 6
Alive: true
Agent ID: 2 Requester Agent: true
Total Successes: 2 Total Failures: 2
Has Partner: true
Partner ID: 4
Basic Trust: 0.7975653290553835
Old General Trust In Partner: 0.425
New General Trust In Partner: 0.36443749999999997
Situational Trust: 0.33896526484853795 Risk: 0.3347057059623324
Will Cooperate: true
Success: false
Num Success with Partner: 0 Num Failure: 2
**

www.manaraa.com

151

APPENDIX E

class CreateFixedInputs

import java.io.*;
import java.util.*;

public class CreateFixedInputs
{

public static void main (String[] args) throws Exception {

/***/
/*
Method main:

1) Receives two integer command line inputs, one equal to the maximum number of agents in the MAS,
and the other equal to the maximum number of deceptive agents in the MAS.

2) Outputs two column rows up to the maximum number of agents with the first column consisting of
basic trust values, and the second consisting of risk values. All values created using a random number
generator.

3) Outputs two column rows up to the maximum number of deceptive agents with the first column
consisting of the agent’s level of deception, and the second consisting of the agent’s deceptive threshold.
All values are created using a random number generator.

4) Results of outputs are written to file c:\\javatst\\kmas\\docs\\fixedIn.txt
*/
/***/

//Variable declarations

int numAgents = Integer.parseInt(args[0]);
int numDecAgents = Integer.parseInt(args[1]);
FileWriter outfile = new FileWriter("c:\\javatst\\kmas\\docs\\fixedIn.txt");
Random rand = new Random();

www.manaraa.com

152

//Method Execution

try
{
 for (int i = 0; i < numAgents; i++)
 outfile.write(rand.nextDouble() + "\t" + rand.nextDouble() + "\r\n");
 outfile.write("---------------begin deceptive input-----------------\r\n");
 for (int i = 0; i < numDecAgents; i++)
 outfile.write(rand.nextDouble() + "\t" + rand.nextDouble() + "\r\n");
 outfile.flush();
 outfile.close();
}
catch (Exception e) {System.err.println(e);}

} // End method main()

} // End class CreateFixedInputs

www.manaraa.com

153

APPENDIX F

class ThesisKmas

public class ThesisKmas
{

public static void main (String[] args) {

/***/
/*
Method main:

 This method is the main executable for the KMAS experiment: a MAS society
implementing the K x N -nearest neighbor learning algorithm as a cooperation strategy
for unknown potential partners.

1) Receives command line input that specifies path and name of a file containing experiment
input which is read by class Kmas.

2) Creates a Kmas object which is the executable experiment trial.

3) Feeds experiment input file contents into the KMAS experiment environment.

4) Populates KMAS with randomly selected agents from the pool of available agents, and activates them
according to the number of initially “alive” agents specified in the experiment input file.

5) Randomly selects active agents and makes them deceptive according to the number specified in the
experiment file.

6) Executes KMAS according to the maximum number of time steps specified in the experiment input
file. Outputs cooperation log if in debug mode as well as a listing of initial agent values.

7) Outputs failure rate log.
*/
/***/

//Variable declarations

 Kmas systemK;

www.manaraa.com

154

//Method Execution

 systemK = new Kmas(args[0]);
 try
 {
 systemK.getInput();
 systemK.printInput();
 systemK.createMAS();
 systemK.setDeceptiveAgents();
 while (systemK.getTimeStep() < systemK.getMaxTime())
 systemK.executeMAS();
 systemK.printFailures();
 }
 catch(Exception e)
 {System.err.println(e);}

} // End method main()

} // End class ThesisKmas

www.manaraa.com

155

APPENDIX G

class Kmas

import java.io.*;
import java.util.*;
import java.text.*;

public class Kmas
{

/***/
/*
class Kmas:

Executable experiment that defines the MAS and the necessary methods to execute one experiment life
cycle.

1) After instantiation by class ThesisKmas, receives and stores experiment input file contents specified
as command line file input while executing ThesisKmas.

2) Creates all agents and randomly sets a maximum number of agents to be initially active in the system.
Once an agent is made active, it stays active.

3) Randomly selects a set number of agents to be deceptive. Initially, deceptive agents can be active or
inactive.

4) Uses contents of fixed input file to give basic trust, risk, deception, and deception threshold values to
all agents if input file parameter FixedInput is set to Y. If not, random values are created using a random
number generator. If fixed deception is turned on, deceptive agents receive values for deception and
deceptive threshold. If experiment input file parameter FixedDeception is N, random values are given
and each agent will produce a new deceptive threshold value each time cooperation is required.

5) At the beginning of time step (life cycle), randomly adds or does not add a new agent to the system by
making a non-active agent active. Resets agent cooperation variables to default (agent ID of cooperative
partner, decision to cooperate, “has partner” flag, cooperation success flag, requester agent designator
flag).

6) Initiates interaction between requester agents and selected partners and outputs to cooperation log if in
debug mode.

7) Records and stores data needed to create the failure rate log.
*/
/***/

www.manaraa.com

156

 //Class variable declaration:

 String [] inputVals; //holds contents of input file specified in command line input
 int mas_Size; //input, maximum number of agents in the MAS
 int maxTime; //input, maximum number of time steps or executable life cycles
 int timeStep; //current time step
 int numAlive; //input, maximum number of agents initially active in the environment
 int numDecep; //not currently used
 int totFailures; //counter, number of cooperation failures
 int [] numAgentsAlive; //array of number of agents alive by executed time step
 double [] failureRate; //array of failure rates at the end of each time step
 int [] tallyF; //array of number of total failures by time step
 int [] numDecepAlive; //array of number of deceptive agents by time step
 KmasAgent [] mas; //array of agent objects defining the MAS environment
 FileWriter [] out; //array of agent cooperation logs
 int k_Nearest; //input, number of nearest neighbors
 int numDeceptive; //input, number of deceptive agents
 double weightAge; //input, Euclidean weight for agent age
 double weightSuccessful; //input, Euclidean weight for number of successful cooperation results
 double weightBasicT; //input, Euclidean weight for basic trust
 double weightRisk; //input, Euclidean weight for risk
 double tuRate; //input, trust update rate
 int lrnRate; //input, learning rate or value for exploration
 boolean debug; //input, debug mode
 String prefix; //input, prefix for path and beginning filename for failure rate log
 boolean fixedInFlag; //input, determines if fixed input is chosen
 boolean fixedDeceptionFlag; //input, determines if values for deception are fixed
 FileReader fixedInFile; //fixed input file
 FileWriter outFile; //output files
 FileReader inFile; //input file object
 String inFileName; //input filename

 public Kmas(String theFile) //constructor
 {
 try
 {
 inFile = new FileReader(theFile);
 inFileName = theFile;
 }
 catch (Exception e) {System.err.println(e);}

 } // end constructor

 public int getTimeStep() { return timeStep; }

 public int getMaxTime() { return maxTime; }

www.manaraa.com

157

 public void getInput()
 {

/***/
/*
Method getInput:

 This method receives command line file input to retrieve the size of the
MAS in number of agents, max time steps, initial number of agents that will
be alive after the MAS is instantiated (must be at least 1 agent greater
than the number of nearest neighbors), number of nearest neighbors, number
deceptive agents, weight of age attribute, weight of successful tasks
attribute, weight of basic trust attribute, weight of risk attribute,
trust update rate, learning rate, debug flag, prefix for naming the output
file to write to when debug flag is set to 'Y', flag to determine if fixed
inputs will be used, the input filename for fixed inputs for basic trust
risk, deceptiveness, and deception threshold for each agent.

Class variables used:

mas_Size
maxTime
numAlive
k_Nearest
numDeceptive
weightAge
weightSuccessful
weightBasicT
weightRisk
tuRate
lrnRate
debug
prefix
fixedInFlag
fixedInFile
fixedDeceptionFlag

*/
/***/

 //Variable Declarations

 String oneLine; //store input for processing
 StringTokenizer str; //parse input
 BufferedReader in; //input buffer
 int index; //array index

www.manaraa.com

158

 //Method Execution

 index = 0;
 timeStep = 0;
 inputVals = new String [16];
 in = new BufferedReader(inFile);
 try
 {
 while((oneLine = in.readLine()) != null)
 {
 str = new StringTokenizer(oneLine);
 str.nextToken();
 inputVals[index] = str.nextToken();
 index++;
 }
 inFile.close();
 mas_Size = Integer.parseInt(inputVals[0]);
 maxTime = Integer.parseInt(inputVals[1]);
 numAlive = Integer.parseInt(inputVals[2]);
 k_Nearest = Integer.parseInt(inputVals[3]);
 numDeceptive = Integer.parseInt(inputVals[4]);
 weightAge = Double.parseDouble(inputVals[5]);
 weightSuccessful = Double.parseDouble(inputVals[6]);
 weightBasicT = Double.parseDouble(inputVals[7]);
 weightRisk = Double.parseDouble(inputVals[8]);
 tuRate = Double.parseDouble(inputVals[9]);
 lrnRate = Integer.parseInt(inputVals[10]);
 debug = (inputVals[11].equals(String.valueOf('Y'))) ? true : false;
 prefix = inputVals[12];
 fixedInFlag = (inputVals[13].equals(String.valueOf('Y'))) ? true : false;;
 fixedInFile = new FileReader(inputVals[14]);
 fixedDeceptionFlag = (inputVals[15].equals(String.valueOf('Y'))) ? true : false;;
 outFile = new FileWriter(prefix + "init.txt");
 out = new FileWriter [mas_Size];
 if (debug)
 for (int i = 0; i < mas_Size; i++)
 out[i] = new FileWriter(prefix + "Agent" + i + ".txt");
 tallyF = new int [maxTime];
 numDecepAlive = new int [maxTime];
 failureRate = new double [maxTime];
 numAgentsAlive = new int [maxTime];
 for (int i = 0; i < maxTime; i++)
 {
 tallyF[i] = 0;
 numDecepAlive[i] = 0;
 failureRate[i] = 0.0;
 numAgentsAlive[i] = 0;
 }
 }
 catch (Exception e) {System.err.println(e);}
 mas = new KmasAgent[mas_Size];

www.manaraa.com

159

 } // End method getInput()

 public void createMAS()
 {

 /***/
 /*
 Method createMAS:
 This method creates the array of KmasAgent objects according to the number of maximum agents
 specified in the input file. Agents are then randomly selected to be alive (active in the system) using
 a random number generator. Each agent is then given a copy of the array to allow it to reference the
 array objects that identify agents in the KMAS environment.
 */
 /***/

 Random r = new Random();
 int aCount = 0;
 int a;

 for (int i = 0; i < mas_Size; i++)
 mas[i] = new KmasAgent(i, 0, k_Nearest, mas_Size, weightAge,
 weightSuccessful, weightBasicT, weightRisk,
 tuRate, lrnRate, fixedDeceptionFlag);

 while (aCount < numAlive) //randomly make agents alive
 {
 a = Math.abs(r.nextInt()) %mas_Size;
 if (! mas[a].getAlive())
 {
 mas[a].setAlive(true);
 aCount++;
 }
 }

 for (int i = 0; i < mas_Size; i++)
 mas[i].setKmasAgentArray(mas);
 } // end method createMAS();

 public void setDeceptiveAgents()
 {

 /***/
 /*
 Method setDeceptiveAgents:
 This method randomly selects agents instantiated in method createMAS, and makes them deceptive.
 If the Boolean variable fixedInFlag is set to true, method getFixedInput is called to store fixed input.

www.manaraa.com

160

 Method printBeginningVals() is called to echo input.
 */
 /***/

 Random r = new Random();
 int dCount = 0;
 int a;

 while (dCount < numDeceptive) //randomly create deceptive agents
 {
 a = Math.abs(r.nextInt()) %mas_Size;
 if (mas[a].getDeceptive() != 1)
 {
 mas[a].setDeceptive(1);
 dCount++;
 }
 }
 if (fixedInFlag)
 this.getFixedInput();
 this.printBeginningVals();
 } // end method setDeceptiveAgents()

 public void getFixedInput()
 {

 /***/
 /*
 Method getFixedInput:
 This method reads the contents of the fixed input file to first store basic trust and risk. If fixed
 deception is chosen (fixedDeceptionFlag is true), the level of deception and deceptive threshold are
 stored for each deceptive agent.
 */
 /***/

 String oneLine; //store input for processing
 StringTokenizer str; //parse input
 BufferedReader in; //input buffer
 int a = 0; //index for agent array

 in = new BufferedReader(fixedInFile);
 try
 {
 in = new BufferedReader(fixedInFile);
 while((oneLine = in.readLine()) != null && a != 50)
 {
 str = new StringTokenizer(oneLine);
 mas[a].setBasicTrust(Double.parseDouble(str.nextToken()));
 mas[a].setRisk(Double.parseDouble(str.nextToken()));
 a++;

www.manaraa.com

161

 }
 if (fixedDeceptionFlag)
 for (int i = 0; i < mas_Size; i++)
 if (mas[i].getDeceptive() == 1)
 {
 oneLine = in.readLine();
 str = new StringTokenizer(oneLine);
 mas[i].setDeception(Double.parseDouble(str.nextToken()));
 mas[i].setDeceptiveThreshold(Double.parseDouble(str.nextToken()));
 }
 fixedInFile.close();
 }
 catch (Exception e) {System.err.println(e);}
 } // end method getFixedInput()

 public void executeMAS()
 {

 /***/
 /*
 Method executeMAS:
 This method causes execution of one life cycle of the KMAS environment. The variable timeStep
 is incremented at the beginning. If the maximum number of allowable agents in the MAS has not
 been reached yet, an agent is randomly chosen to be made active (setAlive(true)) if this timeStep
 allows the addition of another agent. Then, agents randomly select interaction partners up to the
 maximum number of achievable agent pairs based on the number of active agents in the environment.
 Cooperation is then initiated between the paired agents. Cooperation results are recorded, and
 cooperation logs are updated if the experiment is in debug mode.
 */
 /***/

 int maxRequesters;
 Random a;
 int numR = 0;
 int i = 0;
 boolean keepLooking = true;

 a = new Random();
 maxRequesters = (int) Math.floor(numAlive/2); //max # paired agents
 timeStep++;

 for (int j = 0; j < mas_Size; j++)
 mas[j].defaultCoopVars();
 if (numAlive < mas_Size) //add new agents to execution if available
 {
 i = Math.abs(a.nextInt()) %4; //random number between 0 and 3
 if (i == 0 || i == 2) //add an agent
 while (keepLooking)
 {

www.manaraa.com

162

 i = Math.abs(a.nextInt()) %mas_Size;
 if (! mas[i].getAlive())
 {
 mas[i].setAlive(true);
 numAlive++;
 keepLooking = false;
 }
 }
 }
 numAgentsAlive[timeStep - 1] = numAlive;
 for (int j = 0; j < mas_Size; j++)
 if (mas[j].getAlive())
 mas[j].setAge(mas[j].getAge() + 1);
 a = new Random(); //new Random number generator
 while(numR < maxRequesters)
 {
 i = Math.abs(a.nextInt()) %mas_Size; //random partner
 if (! mas[i].getHasPartner() && mas[i].getAlive())
 {
 mas[i].findPartner();
 numR++;
 }
 }
 for (int j = 0; j < mas_Size; j++)
 if (mas[j].getAlive())
 mas[j].startCooperation();
 if (debug)
 this.printCooperationLog();
 this.tallyFailures();
 this.tallyDeceptiveAgents();
 } // end method executeMAS()

 public void tallyFailures()
 {

 /***/
 /*
 Method tallyFailures:
 This method requests the cooperation results of each agent pair, and accumulates the total number of
 failures (so far) for the experiment as a whole (for failure rate log), and the number of failures for the
 current time step.
 */
 /***/

 //tally if alive, non-deceptive, cooperating, not successful

 for (int j = 0; j < mas_Size; j++)
 if (mas[j].getAlive())
 if (mas[j].getDeceptive() == 0)

www.manaraa.com

163

 if (mas[j].getCooperate())
 if (! mas[j].getSuccess())
 {
 tallyF[timeStep - 1] += 1;
 totFailures++;
 }
 failureRate[timeStep - 1] = (double) totFailures/timeStep;
 } // end method tallyFailures()

 public void tallyDeceptiveAgents()
 {

 /***/
 /*
 Method tallyDeceptiveAgents:
 This method records the number of deceptive agents active in the system at each time step.
 */
 /***/

 //tally alive, deceptive agents at timestep

 for (int j = 0; j < mas_Size; j++)
 if (mas[j].getAlive())
 if (mas[j].getDeceptive() == 1)
 numDecepAlive[timeStep - 1] +=1 ;
 } // end method tallyDeceptiveAgents()

 public void printInput()
 {

 /***/
 /*
 Method printInput:
 This method echoes initial input values from the file specified in the constructor.
 Contents are written to the filename specified by the class variable outFile.
 */
 /***/

 try
 {
 outFile.write("--\r\n");
 outFile.write("KMAS INPUT PARAMETERS:\r\n\r\n");
 outFile.write("MAS_Size: " + mas_Size + "\r\n");
 outFile.write("TimeSteps: " + maxTime + "\r\n");
 outFile.write("Initially Alive: " + numAlive + "\r\n");
 outFile.write("NumK: " + k_Nearest + "\r\n");

www.manaraa.com

164

 outFile.write("NumDeceptive: " + numDeceptive + "\r\n");
 outFile.write("WeightAge: " + weightAge + "\r\n");
 outFile.write("WeightSuccessfulTasks: " + weightSuccessful + "\r\n");
 outFile.write("WeightBasicTrust: " + weightBasicT + "\r\n");
 outFile.write("WeightRisk: " + weightRisk + "\r\n");
 outFile.write("TrustUpdateRate: " + tuRate + "\r\n");
 outFile.write("LearningRate: " + lrnRate + "\r\n");
 outFile.write("Debug: " + debug + "\r\n");
 outFile.write("Outfile Prefix: " + prefix + "\r\n");
 outFile.write("Fixed Input Flag: " + fixedInFlag + "\r\n");
 outFile.write("Fixed Input File: " + inputVals[14] + "\r\n");
 outFile.write("Fixed Deception Flag: " + fixedDeceptionFlag + "\r\n");
 outFile.write("--\r\n");
 outFile.flush();
 }
 catch (Exception e) {System.err.println(e);}
 } // End method printInput()

 public void printBeginningVals()
 {

 /***/
 /*
 Method printBeginningVals:
 This method outputs the beginning agent values before start of execution. All agent, active and
 Inactive, are shown. Contents are written to the filename specified by the class variable outFile.
 */
 /***/

 try
 {
 outFile.write("BEGINNING AGENT VALUES:\r\n\r\n");
 for (int i = 0; i < mas_Size; i++)
 {
 outFile.write("Agent ID: " + mas[i].getID() + "\r\n");
 outFile.write("Alive: " + mas[i].getAlive() + "\r\n");
 outFile.write("Partner: " + mas[i].getPartner() + "\r\n");
 outFile.write("Deceptive: " + mas[i].getDeceptive() + "\r\n");
 if (mas[i].getDeceptive() == 1)
 {
 outFile.write("Deception Level: " + mas[i].getDeception() + " ");
 outFile.write("Deception Threshold: " + mas[i].getDThreshold() + "\r\n");
 }
 outFile.write("Basic Trust: " + mas[i].getTrustB() + "\r\n");
 outFile.write("Risk: " + mas[i].getRisk() + "\r\n\r\n");
 }
 outFile.write("--\r\n");
 outFile.flush();
 outFile.close();

www.manaraa.com

165

 }
 catch (Exception e) {System.err.println(e);}
 } // end method printBeginningVals()

 public void printCooperationLog()
 {

 /***/
 /*
 Method printCooperationLog:
 This method will output an execution trace of each agent if the experiment is in debug mode.
 The cooperation history of each agent is written to a file that is unique to each agent. The filename
 and path of this file is specified in the FileWriter object array out[].
 */
 /***/

 KmasAgent [] nArray;
 int p = 0;
 try
 {
 for (int i = 0; i < mas_Size; i++)
 {
 outFile = out[i];
 if (mas[i].getRequesterVal())
 {
 outFile.write("Time Step: " + timeStep + " ");
 outFile.write("Agent Age: " + mas[i].getAge() + "\r\n");
 outFile.write("Alive: " + mas[i].getAlive() + "\r\n");
 outFile.write("Agent ID: " + i + " ");
 outFile.write("Requester Agent: " + mas[i].getRequesterVal() + "\r\n");
 outFile.write("Total Successes: " + mas[i].getTaskS() + " ");
 outFile.write("Total Failures: " + mas[i].getTaskU() + "\r\n");
 outFile.write("Has Partner: " + mas[i].getHasPartner() + "\r\n");
 p = mas[i].getPartner();
 outFile.write("Partner ID: " + p + "\r\n");
 if (mas[i].getPerformK())
 {
 nArray = mas[i].getNeighbors();
 outFile.write("Nearest Neighbors: ");
 for (int k = 1; k <= k_Nearest; k++)
 outFile.write(nArray[k].getID() + " ");
 outFile.write("\r\n");
 }
 if (p != -1)
 {
 outFile.write("Basic Trust: " + mas[i].getTrustB() + "\r\n");
 outFile.write("Old General Trust In Partner: " + mas[i].getOldTrustG(p) + "\r\n");
 outFile.write("New General Trust In Partner: " + mas[i].getTrustG(p) + "\r\n");
 outFile.write("Situational Trust: " + mas[i].getTrustS() + " ");

www.manaraa.com

166

 outFile.write("Risk: " + mas[i].getRisk() + "\r\n");
 outFile.write("Will Cooperate: " + mas[i].getCooperate() + "\r\n");
 outFile.write("Success: " + mas[i].getSuccess() + "\r\n");
 outFile.write("Num Success with Partner: ");
 outFile.write(mas[i].getNumSuccesses(p) + " ");
 outFile.write("Num Failure: ");
 outFile.write(mas[i].getNumFailures(p) + "\r\n");
 }
 outFile.write("**\r\n");
 outFile.flush();
 }
 }
 }
 catch (Exception e) {System.err.println(e);}
 } // end method printCooperationLog()

 public void printFailures()
 {

 /***/
 /*
 Method printFailures:
 This method formats output that is written to the failure log specified by the variable ‘prefix’, and
 and a date/time stamp. Number of failures for a given time step and the failure rate are displayed.
 */
 /***/

 try
 {
 this.closeOutFiles();

 SimpleDateFormat sdf;
 sdf = new SimpleDateFormat("MMddyyHHmmss");
 String record;
 outFile = new FileWriter(prefix + "failures." + sdf.format(new Date()) + ".txt");
 outFile.write(inFileName + "\r\n\r\n");
 outFile.write("OUTPUT: " + prefix + "failures." + sdf.format(new Date()) + ".txt" +"\r\n\r\n");
 outFile.write("TIMESTEP,");
 outFile.write("NUM ALIVE,");
 outFile.write("NUM ALIVE DECEPTIVE,");
 outFile.write("FAILURES,");
 outFile.write("FAILURE RATE" + "\r\n");

 for (int t = 0; t < maxTime; t++)
 {
 /* outFile.write(t + " : " + tallyF[t] + "\r\n"); */

 record = Integer.toString(t);
 record = record + "," + numAgentsAlive[t];

www.manaraa.com

167

 record = record + "," + numDecepAlive[t];
 record = record + "," + tallyF[t];
 record = record + "," + new Double(failureRate[t]).floatValue();
 outFile.write(record + "\r\n");
 }
 outFile.flush();
 outFile.close();
 }
 catch (Exception e) {System.err.println(e);}
 } // end method printFailures()

 public void closeOutFiles()
 {

 /***/
 /*
 Method closeOutFiles:
 This method closes the output stream for the FileWrite object, outFile.
 */
 /***/

 if (debug)
 {
 try
 {
 for (int i = 0; i < mas_Size; i++)
 {
 outFile = out[i];
 outFile.close();
 }
 }
 catch (Exception e) {System.err.println(e);}
 }
 } // end method closeOutFiles()

} // End class Kmas

www.manaraa.com

168

APPENDIX H

class KmasAgent

import java.util.*;
import java.text.*;
import java.io.*;

public class KmasAgent
{

/***/
/*
Class KmasAgent:

Encapsulation of a single intelligent agent with the functionality needed to perform k-Nearest Neighbor,
store and update trust values for known interaction partners, find potential partners as an agent requesting
interaction, decide if cooperation with a selected partner is desired based on situation trust and risk,
determine the results of cooperation as being success or failure, and practice deception if the agent is a
deceptive agent. Funcationality is also present to allow an agent to act as a selected partner.

1) If deceptive, receive values for agent level of deception and deceptive threshold through fixed input or
random values. The choice is based on the variable deceptFlag passed into the class constructor.

2) If a requester agent (one who selects a partner and initiates interaction), class KMAS will direct the
agent (through KmasAgent methods) to find a potential partner through random selection. Once the
partner is selected, the partner will be locked into an exclusive partnership and agent ID’s will be
exchanged.

3) Starts cooperation decision logic by using trustworthiness of selected interaction partners. If partner is
unknown, or exploration is desired, perform k-Nearest Neighbor algorithm using Euclidean distance with
weighted variables age, successful tasks, basic trust, and risk to select k neighbors.

4) Calculates situational trust to determine if cooperation is warranted.

5) If cooperation is warranted, cooperate, and store the result of cooperating. If the agent is an
interaction partner, defect if deception is greater than the deceptive threshold.

6) If this instance of class KmasAgent is an agent requesting interaction (has selected a partner), this
class uses the result of cooperation to update general trust and cumulative totals of successful or non-
successful (failures) cooperation results as a whole, and also by the interaction partner involved in the
cooperative activity.

*/
/***/

www.manaraa.com

169

//class variable declaration

 /* agent specific */
 boolean alive; //is agent alive in the MAS?
 int age; //age of KMAS agent
 int taskS; //number of successfully completed tasks
 int taskU; //number of unsuccessful
 double trustB; //basic trust
 double risk; //risk threshold
 int agentID; //numeric agent ID
 int deceptive; //Is the agent deceptive? 0 (no), or 1 (yes)
 double deception; //degree of agent deceptiveness
 boolean fixedDeceptionFlag; //will deceptiveness be fixed or random
 double dThreshold; //threshold of deception
 double tuRate; //trust update rate
 int lrnRate; //learning rate
 boolean explore; //exploration flag
 Random rand; //random number generator

 /* partner specific */
 double trustS; //situational trust in current partner
 double [] trustArray; //array of general trust values by agentID
 double [] oldTrustArray; //array of old general trust values by ID
 int [] taskSArray; //array of total successful tasks by agentID
 int [] taskFArray; //array of total failed tasks by agentID

 /* k-Nearest neighbor specific */
 int numK; //value for k in k-nearest
 boolean performK; //perform nearest neighbor?
 double wA; //weight for age attribute;
 double wS; //weight for taskS attribute;
 double wT; //weight for basic trust attribute;
 double wR; //weight for risk attribute;
 double [] edArray; //agent ordered array of euclidean distances
 KmasAgent [] sArray; //euclidean distance ordered array of agents

 /* cooperation specific */
 KmasAgent [] agentArray; //array of Kmas agents
 int currentPartner; //current bound cooperation partner
 int numAgents; //total number of agents in the MAS
 boolean cooperate; //cooperation flag: Will cooperate with partner?
 public boolean hasPartner; //Has partner been found?
 boolean success; //Was cooperation successful?
 boolean requester; //requesting cooperation?

www.manaraa.com

170

//class constructor

 public KmasAgent(int id, int decpt, int k, int numA, double wtA,
 double wtS, double wtT, double wtR, double tuRt,
 int lrnRt, boolean deceptFlag)
 {
 agentID = id;
 deceptive = decpt;
 numK = k;
 numAgents = numA;
 wA = wtA;
 wS = wtS;
 wT = wtT;
 wR = wtR;
 tuRate = tuRt;
 lrnRate = lrnRt;
 fixedDeceptionFlag = deceptFlag;

 //initialize other variables

 rand = new Random();
 alive = false;
 age = 0;
 taskS = 0;
 taskU = 0;
 trustB = rand.nextDouble();
 performK = false;
 this.setPartner(-1);
 cooperate = false;
 rand = new Random ();
 risk = rand.nextDouble();
 trustArray = new double[numAgents];
 oldTrustArray = new double[numAgents];
 taskSArray = new int[numAgents];
 taskFArray = new int[numAgents];

 for (int i = 0; i < numAgents; i++)
 {
 trustArray[i] = 0.0;
 oldTrustArray[i] = 0.0;
 taskSArray[i] = 0;
 taskFArray[i] = 0;
 }
 } // end constructor

www.manaraa.com

171

//getter methods

 public int getID() { return agentID; }

 public boolean getAlive() { return alive; }

 public int getAge() { return age; }

 public int getDeceptive() { return deceptive; }

 public double getTrustS() { return trustS; }

 public int getTaskS() { return taskS; }

 public int getTaskU() { return taskU; }

 public double getTrustB() { return trustB; }

 public double getRisk() { return risk; }

 public double getDeception() { return deception; }

 public double getDThreshold() { return dThreshold; }

 public double getTrustG(int agentID) { return trustArray[agentID]; }

 public double getOldTrustG(int agentID) { return oldTrustArray[agentID]; }

 public boolean getHasPartner() { return hasPartner; }

 public boolean getRequesterVal() { return requester; }

 public int getPartner() { return currentPartner; }

 public boolean getCooperate() { return cooperate; }

 public boolean getSuccess() { return success; }

 public int getNumSuccesses(int agentID) { return taskSArray[agentID]; }

 public int getNumFailures(int agentID) { return taskFArray[agentID]; }

 public boolean getPerformK() { return performK; }

 public KmasAgent [] getNeighbors() { return sArray; }

www.manaraa.com

172

//setter methods

 public void setAge (int a) { age = a; }

 public void setDeceptive (int d) //give a random value for deception if deceptive
 {
 rand = new Random();
 deceptive = d;
 if (deceptive != 0)
 deception = rand.nextDouble();
 }

 public void setDeception(double d) { deception = d; } //used for fixed input deception

 public void setDeceptiveThreshold() //give a random deceptive threshold
 {
 rand = new Random();
 if (!fixedDeceptionFlag)
 dThreshold = rand.nextDouble();
 }

 public void setDeceptiveThreshold(double dThresh) { dThreshold = dThresh; } //fixed threshold

 public void setBasicTrust(double bTrust) { trustB = bTrust; }

 public void setRisk(double r) { risk = r; }

 public void setAlive(boolean aVal) { alive = aVal; }

 public void setPartner(int partner) { currentPartner = partner; }

 public void setCooperate(boolean cVal) { cooperate = cVal; }

 public void setHasPartner(boolean hpVal) { hasPartner = hpVal; }

 public void setSuccess(boolean sVal) { success = sVal; }

 public void setRequester(boolean rVal) { requester = rVal; }

 public void setKmasAgentArray(KmasAgent [] kA) { agentArray = kA; }

www.manaraa.com

173

//refresh methods

 public void defaultCoopVars()
 {
 //refresh cooperation variables to default values before start of cooperation

 this.setPartner(-1);
 this.setCooperate(false);
 this.setHasPartner(false);
 this.setSuccess(false);
 this.setRequester(false);
 }

 public void eraseMemory()
 {
 //erase general trust array, forcing agent to perform K-nearest
 // ******Not used currently

 trustArray = new double[numAgents];
 oldTrustArray = new double[numAgents];
 }

//K-neighbor methods

 public void createEDArray()
 {

 /***/
 /*
 Method createEDArray:
 This method creates an array of agent Euclidean distances, ordered by agent ID.
 */
 /***/

 // local variables
 double ageDiff = 0;
 double taskSDiff = 0;
 double trustBDiff = 0.0;
 double riskDiff = 0.0;
 double attributeSum = 0.0;
 double euclideanD = 0.0;
 edArray = new double[numAgents]; //refresh

 try
 {
 for (int i = 0; i < numAgents; i++)
 {
 ageDiff = wA * (age - agentArray[i].getAge());

www.manaraa.com

174

 taskSDiff = wS * (taskS - agentArray[i].getTaskS());
 trustBDiff = wT * (trustB - agentArray[i].getTrustB());
 riskDiff = wR * (risk - agentArray[i].getRisk());
 attributeSum = (ageDiff * ageDiff) + (taskSDiff * taskSDiff)
 + (trustBDiff * trustBDiff) + (riskDiff * riskDiff);
 euclideanD = Math.sqrt(attributeSum);
 edArray[i] = euclideanD;
 }
 }
 catch (Exception e)
 {
 System.err.println(e);
 System.err.println("Error in KmasAgent method createEDArray()");
 this.dumpAgentVars();
 }
 } //end method createEDArray()

 public void sortAgentsByED()
 {

 /***/
 /*
 Method sortAgentsByED:
 This method creates an array of Kmas Agents, sorted by Euclidean distance.
 */
 /***/

 //local variables
 int s = 0; //index for sorted array
 String [] pickL; //pick list of agents to sort
 int edSmallest = -1; //agent ID with smallest euclidean distance

 sArray = new KmasAgent[numAgents]; //refresh sorted agent list
 pickL = new String [numAgents]; //refresh pick list array
 for (int i = 0; i < numAgents; i++)
 pickL[i] = "Not Picked";
 try
 {
 while (s < numAgents)
 {
 for (int i = 0; i < numAgents; i++)
 if (pickL[i] != null)
 {
 if (edSmallest == -1)
 edSmallest = i;
 if (edArray[i] <= edArray[edSmallest])
 edSmallest = i;
 }
 sArray[s] = agentArray[edSmallest];

www.manaraa.com

175

 pickL[edSmallest] = null;
 edSmallest = -1;
 s++;
 }
 }
 catch (Exception e)
 {
 System.err.println(e);
 System.err.println("Error in KmasAgent method sortAgentsByED()");
 this.dumpAgentVars();
 }
 } //end method sortAgentsByED()

 public void calcKTrust()
 {

 /***/
 /*
 Method calcKTrust:
 This method calculates the K-Nearest neighbor general trust estimate for an unknown agent, and
 a known agent during periods of exploration.
 */
 /***/

 //local variables
 double kTrustG = 0.0;
 int nCount = 0; //num of alive neighbor k contributors
 int kCount = 0; //num of non zero K contributors

 try
 {
 for (int i = 1; i < numAgents; i++) //i = 0 is agent performing k
 if (nCount < numK)
 if (sArray[i].getAlive())
 {
 kTrustG += sArray[i].getTrustG(currentPartner);
 if (sArray[i].getTrustG(currentPartner) != 0)
 kCount++;
 nCount++;
 }
 if (kTrustG == 0.0) //agent unknown by k partners
 kTrustG = 0.5; //take a chance if risk allows
 else
 kTrustG /= (double) kCount;
 if (!explore)
 trustArray[currentPartner] = kTrustG;
 else
 if (explore && kTrustG < trustArray[currentPartner])
 trustArray[currentPartner] = kTrustG;

www.manaraa.com

176

 }
 catch (Exception e)
 {
 System.err.println(e);
 System.err.println("Error in KmasAgent method calcKTrust()");
 this.dumpAgentVars();
 }
 } //end method calcKTrust()

//trust calculation methods

 public void calcSTrust()
 {
 /***/
 /*
 Method calcSTrust:
 This method calculates situational trust for a partner agent. It is used by an agent that has selected
 a partner, and now wishes to engage in interaction.
 */
 /***/

 //local variables
 trustS = 0.0; //situational trust

 try
 {
 trustS = trustB * trustArray[currentPartner];
 }
 catch (Exception e)
 {
 System.err.println(e);
 System.err.println("Error in KmasAgent method calcSTrust()");
 this.dumpAgentVars();
 }
 } //end method calcSTrust()

 public void upDateTrust()
 {

 /***/
 /*
 Method upDateTrust()
 This method updates general trust in a partner after cooperation. The update equation is based
 on the ratio of total number of cooperation successes with the current partner, divided by total number
 of cooperation attempts with the current partner based on all past time steps. This ratio is then used
 to calculate a change in trust (deltaT). The change in trust is used to update general trust.

www.manaraa.com

177

 */
 /***/

 //local variables
 double ratioS; //ratio of successful to total tasks
 double deltaT; //difference of ratioS and old general trust

 try
 {
 if (taskSArray[currentPartner] + taskFArray[currentPartner] == 0)
 ratioS = 0;
 else
 ratioS = (double) taskSArray[currentPartner] / (taskSArray[currentPartner] +
 taskFArray[currentPartner]);
 deltaT = ratioS - trustArray[currentPartner];
 trustArray[currentPartner] += deltaT * (1 - deltaT) * tuRate;
 if (trustArray[currentPartner] > 1.0)
 trustArray[currentPartner] = 1.0;
 if (trustArray[currentPartner] < 0.0)
 trustArray[currentPartner] = 0.001;
 }
 catch (Exception e)
 {
 System.err.println(e);
 System.err.println("Error in KmasAgent method upDateTrust()");
 this.dumpAgentVars();
 }
 } //end method upDateTrust()

//cooperation methods

 public void findPartner()
 {

 /***/
 /*
 Method findPatner:
 This method allows an agent to select a potential interaction partner among the active agents
 in the system. Partners are randomly selected.
 */
 /***/

www.manaraa.com

178

 //local variables
 Random partner = new Random();
 int i = 0;

 try
 {
 while (! hasPartner)
 {
 i = Math.abs(partner.nextInt()) %numAgents;
 if (! agentArray[i].getHasPartner() && i != agentID
 && agentArray[i].getAlive())
 {
 agentArray[i].setHasPartner(true);
 agentArray[i].setPartner(agentID);
 this.setHasPartner(true);
 this.setPartner(i);
 this.setRequester(true);
 }
 }
 }
 catch (Exception e)
 {
 System.err.println(e);
 System.err.println("Error in KmasAgent method findPartner()");
 this.dumpAgentVars();
 }
 } //end method findPartner()

 public void startCooperation()
 {

 /***/
 /*
 Method startCooperation:
 This method allows a requester agent to decide whether or not to cooperate with a chosen
 interaction partner. If this life cycle is a period of exploration, or if the partner is unknown,
 k-Nearest Neighbor is performed. Situational trust is calculated, and the requester agent will
 cooperate if the situational trust is greater than risk. The results of cooperation are retrieved (partner
 did or did not defect). Arrays recording cooperation failures or successes are updated. Trust is
 updated.
 */
 /***/

 performK = false;
 explore = false;

www.manaraa.com

179

 //start agent cooperation execution

 if (!requester)
 return;
 try
 {
 oldTrustArray[currentPartner] = trustArray[currentPartner];
 if(trustArray[currentPartner] == 0.0) //unknown partner
 {
 performK = true;
 this.createEDArray();
 this.sortAgentsByED();
 this.calcKTrust();
 oldTrustArray[currentPartner] = trustArray[currentPartner];
 }
 else //exploration for known
 if (lrnRate != 0 && (age % lrnRate) == 0)
 {
 explore = true;
 performK = true;
 this.createEDArray();
 this.sortAgentsByED();
 this.calcKTrust();
 oldTrustArray[currentPartner] = trustArray[currentPartner];
 }

 this.calcSTrust();
 if (this.willCooperate())
 {
 this.setCooperate(true);
 this.getCoopResult();
 if (success)
 {
 taskSArray[currentPartner] += 1;
 taskS++;
 }
 else
 {
 taskFArray[currentPartner] += 1;
 taskU++;
 }
 this.upDateTrust();
 }
 }
 catch (Exception e)
 {
 System.err.println(e);
 System.err.println("Error in KmasAgent method startCooperation()");
 this.dumpAgentVars();
 }
 } //end method startCooperation()

www.manaraa.com

180

 public boolean willCooperate()
 {
 //requester agent will cooperate if situational trust is greater than risk

 if (trustS >= risk)
 return true;
 else
 return false;
 } //end method willCooperate()

 public void getCoopResult()
 {
 //retrieve cooperation result from current partner, results in success or failure

 this.setSuccess(agentArray[currentPartner].returnCoopResult());
 } //end method getCoopResult()

 public boolean returnCoopResult()
 {

 /***/
 /*
 Method returnCoopResult:
 This method returns the cooperation result to the caller. During execution, the caller is a
 requester agent using this method to see whether or not a selected partner will cooperate
 successfully or defect. The functionality of this method is executed by the selected partner.
 */
 /***/

 //return cooperation result to requester agent
 //boolean result for caller success variable

 this.setDeceptiveThreshold();
 if (deception > dThreshold && deceptive ==1)
 return false;
 else
 return true;
 } //end method returnCoopResult()

www.manaraa.com

181

 public void dumpAgentVars()
 {

 /***/
 /*
 Method dumpAgentVars:
 This method dumps agent variables in case of expections to an output file. The output file is
 named using a combination of “DMPA”, agentID, and date/time stamp.
 */
 /***/

 FileWriter out;
 SimpleDateFormat sdf;

 sdf = new SimpleDateFormat("MMddyyHHmmss");
 try
 {
 out = new FileWriter("DMPA" + agentID + "_" + sdf.format(new Date()) + ".txt");
 out.write("id: " + agentID + "\r\n");
 out.write("age: " + age + "\r\n");
 out.write("MAS size: " + numAgents + "\r\n");
 out.write("K value: " + numK + "\r\n");
 out.write("successes: " + taskS + "\r\n");
 out.write("failures: " + taskU + "\r\n");
 out.write("basic trust: " + trustB + "\r\n");
 out.write("risk: " + risk + "\r\n");
 out.write("deceptive: " + deceptive + "\r\n");
 out.write("deception: " + deception + "\r\n");
 out.write("dThreshold: " + dThreshold + "\r\n");
 out.write("has partner? : " + hasPartner + "\r\n");
 out.write("partner: " + currentPartner + "\r\n");
 out.write("situational trust: " + trustS + "\r\n");
 out.write("requester agent? : " + requester + "\r\n");
 out.write("perform K-N? : " + performK + "\r\n");
 out.write("cooperate? : " + cooperate + "\r\n");
 out.write("cooperation successfull? : " + success + "\r\n");
 out.write("\r\n");
 out.write("--\r\n");
 out.write("Agent Array:");
 out.write("\r\n");
 out.write("contents: " + agentArray + "\r\n");
 out.write("\r\n");
 for (int i = 0; i < numAgents; i++)
 out.write("agentArray[" + i + "] : " + agentArray[i].getID() + "\r\n");
 out.write("--\r\n");
 out.write("Trust Array:");
 out.write("\r\n");
 out.write("contents: " + trustArray + "\r\n");
 out.write("\r\n");
 for (int i = 0; i < numAgents; i++)
 out.write("trustArray[" + i + "] : " + trustArray[i] + "\r\n");
 out.write("--\r\n");

www.manaraa.com

182

 out.write("Old Trust Array:");
 out.write("\r\n");
 out.write("contents: " + oldTrustArray + "\r\n");
 out.write("\r\n");
 for (int i = 0; i < numAgents; i++)
 out.write("oldTrustArray[" + i + "] : " + oldTrustArray[i] + "\r\n");
 out.write("--\r\n");
 out.write("Successful Tasks Array:");
 out.write("\r\n");
 out.write("contents: " + taskSArray + "\r\n");
 out.write("\r\n");
 for (int i = 0; i < numAgents; i++)
 out.write("taskSArray[" + i + "] : " + taskSArray[i] + "\r\n");
 out.write("--\r\n");
 out.write("Failed Tasks Array:");
 out.write("\r\n");
 out.write("contents: " + taskFArray + "\r\n");
 out.write("\r\n");
 for (int i = 0; i < numAgents; i++)
 out.write("taskFArray[" + i + "] : " + taskFArray[i] + "\r\n");
 out.write("--\r\n");
 out.write("Euclidean Distance Array:");
 out.write("\r\n");
 out.write("contents: " + edArray + "\r\n");
 out.write("\r\n");
 for (int i = 0; i < numAgents; i++)
 out.write("edArray[" + i + "] : " + edArray[i] + "\r\n");
 out.write("--\r\n");
 out.write("Sorted Neighbor Array:");
 out.write("\r\n");
 out.write("contents: " + sArray + "\r\n");
 out.write("\r\n");
 for (int i = 0; i < numAgents; i++)
 out.write("sArray[" + i + "] : " + sArray[i].getID() + "\r\n");
 out.flush();
 out.close();
 }
 catch (Exception e)
 {
 System.err.println(e);
 System.err.println("Error in Agent " + agentID + " dump");
 }
 } // end method dumpAgentVars()

} // End Class KmasAgent

www.manaraa.com

183

APPENDIX I

Experiment: 1 Failures over time

EXPERIMENT 1 GROUP A

FAILURES T1

0

2

4

6

8

10

12

14

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T1

FAILURES T2

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T2

www.manaraa.com

184

FAILURES T3

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T3

www.manaraa.com

185

EXPERIMENT 1 GROUP B

FAILURES T1

0
2
4
6
8

10
12
14
16

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T1

FAILURES T2

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T2

www.manaraa.com

186

FAILURES T3

0

2

4

6

8

10

12

14

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T3

www.manaraa.com

187

EXPERIMENT 1 GROUP C

FAILURES T1

0

2

4

6

8

10

12

14

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T1

FAILURES T2

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T2

www.manaraa.com

188

FAILURES T3

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T3

www.manaraa.com

189

APPENDIX J

Experiment: 2 Failures over time

EXPERIMENT 2 GROUP A

FAILURES T1

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T1

FAILURES T2

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T2

www.manaraa.com

190

FAILURES T3

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T3

www.manaraa.com

191

EXPERIMENT 2 GROUP B

FAILURES T1

0

2

4

6

8

10

12

14

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T1

FAILURES T2

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T2

www.manaraa.com

192

FAILURES T3

0

2

4

6

8

10

12

14

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T3

www.manaraa.com

193

EXPERIMENT 2 GROUP C

FAILURES T1

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T1

FAILURES T2

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T2

www.manaraa.com

194

FAILURES T3

0

2

4

6

8

10

12

14

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T3

www.manaraa.com

195

APPENDIX K

Experiment: 3 Failures over time

EXPERIMENT 3 GROUP A

FAILURES T1

0

2

4

6

8

10

12

14

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T1

FAILURES T2

0
1
2
3
4
5
6
7
8
9

10

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T2

www.manaraa.com

196

FAILURES T3

0

2

4

6

8

10

12

1 293 585 877 1169 1461 1753 2045 2337 2629 2921

FAILURES T3

www.manaraa.com

197

EXPERIMENT 3 GROUP B

FAILURES T1

0

2

4

6

8

10

12

1 294 587 880 1173 1466 1759 2052 2345 2638 2931

FAILURES T1

FAILURES T2

0

2

4

6

8

10

12

1 294 587 880 1173 1466 1759 2052 2345 2638 2931

FAILURES T2

www.manaraa.com

198

FAILURES T3

0

2

4

6

8

10

12

1 294 587 880 1173 1466 1759 2052 2345 2638 2931

FAILURES T3

www.manaraa.com

199

EXPERIMENT 3 GROUP C

FAILURES T1

0

2

4

6

8

10

12

14

1 294 587 880 1173 1466 1759 2052 2345 2638 2931

FAILURES T1

FAILURES T2

0

2

4

6

8

10

12

1 294 587 880 1173 1466 1759 2052 2345 2638 2931

FAILURES T2

www.manaraa.com

200

FAILURES T3

0

2

4

6

8

10

12

1 294 587 880 1173 1466 1759 2052 2345 2638 2931

FAILURES T3

	K x N Trust-Based Agent Reputation
	Downloaded from

	Table of Contents
	List of Tables
	Table 1: Experiment 1 Inputs
	Table 2: Experiment 1 ETIP Contents
	Table 3: Experiment 1 Group A Observations
	Table 4: Experiment 1 Group B Observations
	Table 5: Experiment 1 Group C Observations
	Table 6: Experiment 2 Inputs
	Table 7: Experiment 2 ETIP Contents
	Table 8: Experiment 2 Group A Observations
	Table 9: Experiment 2 Group B Observations
	Table 10: Experiment 2 Group C Observations
	Table 11: Experiment 3 Inputs
	Table 12: Experiment 3 ETIP Contents
	Table 13: Experiment 3 Group A Observations
	Table 14: Experiment 3 Group B Observations
	Table 15: Experiment 3 Group C Observations

	List of Figures
	Figure 1: Experiment 1 Group A Failure Rate
	Figure 2: Experiment 1 Group A Individual Failure Rate
	Figure 3: Experiment 1 Group B Failure Rate
	Figure 4: Experiment 1 Group B Individual Failure Rate
	Figure 5: Experiment 1 Group C Failure Rate
	Figure 6: Experiment 1 Group C Individual Failure Rate
	Figure 7: Experiment 1 Group A Failures by Time Step
	Figure 8: Experiment 2 Group A Failure Rate
	Figure 9: Experiment 2 Group A Individual Failure Rate
	Figure 10: Experiment 2 Group B Failure Rate
	Figure 11: Experiment 2 Group B Individual Failure Rate
	Figure 12: Experiment 2 Group C Failure Rate
	Figure 13: Experiment 2 Group C Individual Failure Rate
	Figure 14: Experiment 3 Group A Failure Rate
	Figure 15: Experiment 3 Group A Individual Failure Rate
	Figure 16: Experiment 3 Group B Failure Rate
	Figure 17: Experiment 3 Group B Individual Failure Rate
	Figure 18: Experiment 3 Group C Failure Rate
	Figure 19: Experiment 3 Group C Failure Rate

	Abstract
	CHAPTER 1 SOFTWARE AGENTS
	SECTION 1.1: INTRODUCTION
	SECTION 1.2: CATEGORIES OF AGENTS
	SECTION 1.3: AUTONOMY
	SECTION 1.4: RATIONAL AGENCY
	SECTION 1.5: BDI AGENTS

	CHAPTER 2 DISTRIBUTED ARTIFICIAL INTELLIGENCE
	SECTION 2.1: OVERVIEW
	SECTION 2.2: COOPERATION
	SECTION 2.3: COORDINATION
	SECTION 2.4: DISTRIBUTED PROBLEM SOLVING
	SECTION 2.5: MULTI-AGENT SYSTEMS
	SECTION 2.6: EMERGENCE

	CHAPTER 3 TRUST
	SECTION 3.1: INTRODUCTION
	SECTION 3.2: TYPES OF TRUST
	SECTION 3.3: COMPUTING TRUST
	SECTION 3.4: APPLICATIONS OF TRUST TYPES

	CHAPTER 4 MACHINE LEARNING
	SECTION 4.1: OVERVIEW
	SECTION 4.2: TYPES OF LEARNING
	SECTION 4.3: MAS LEARNING
	SECTION 4.4: MACHINE LEARNING and TRUST

	CHAPTER 5 K x N TRUST-BASED AGENT REPUTATION
	SECTION 5.1: k-NEAREST NEIGHBOR and EXPERIMENT HYPOTHESES
	SECTION 5.2: KMAS
	SECTION 5.3: FUTURE RESEARCH

	List of References
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	APPENDIX G
	APPENDIX H
	APPENDIX I
	APPENDIX J
	APPENDIX K

